File size: 16,402 Bytes
0528be1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
from typing import List, Optional, Tuple, Union
import numpy as np
from transformers import (AlbertModel, AlbertTokenizer, BartModel,
BartTokenizer, BertModel, BertTokenizer,
CamembertModel, CamembertTokenizer, CTRLModel,
CTRLTokenizer, DistilBertModel, DistilBertTokenizer,
GPT2Model, GPT2Tokenizer, LongformerModel,
LongformerTokenizer, OpenAIGPTModel,
OpenAIGPTTokenizer, PreTrainedModel,
PreTrainedTokenizer, RobertaModel, RobertaTokenizer,
TransfoXLModel, TransfoXLTokenizer, XLMModel,
XLMTokenizer, XLNetModel, XLNetTokenizer)
from extractive_summarizer.bert_parent import BertParent
from extractive_summarizer.cluster_features import ClusterFeatures
from extractive_summarizer.sentence_handler import SentenceHandler
class ModelProcessor(object):
aggregate_map = {
'mean': np.mean,
'min': np.min,
'median': np.median,
'max': np.max,
}
def __init__(
self,
model: str = 'bert-large-uncased',
custom_model: PreTrainedModel = None,
custom_tokenizer: PreTrainedTokenizer = None,
hidden: Union[List[int], int] = -2,
reduce_option: str = 'mean',
sentence_handler: SentenceHandler = SentenceHandler(),
random_state: int = 12345,
hidden_concat: bool = False,
gpu_id: int = 0,
):
"""
This is the parent Bert Summarizer model. New methods should implement this class.
:param model: This parameter is associated with the inherit string parameters from the transformers library.
:param custom_model: If you have a pre-trained model, you can add the model class here.
:param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
:param hidden: This signifies which layer(s) of the BERT model you would like to use as embeddings.
:param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
:param sentence_handler: The handler to process sentences. If want to use coreference, instantiate and pass.
CoreferenceHandler instance
:param random_state: The random state to reproduce summarizations.
:param hidden_concat: Whether or not to concat multiple hidden layers.
:param gpu_id: GPU device index if CUDA is available.
"""
np.random.seed(random_state)
self.model = BertParent(model, custom_model, custom_tokenizer, gpu_id)
self.hidden = hidden
self.reduce_option = reduce_option
self.sentence_handler = sentence_handler
self.random_state = random_state
self.hidden_concat = hidden_concat
def cluster_runner(
self,
content: List[str],
ratio: float = 0.2,
algorithm: str = 'kmeans',
use_first: bool = True,
num_sentences: int = None
) -> Tuple[List[str], np.ndarray]:
"""
Runs the cluster algorithm based on the hidden state. Returns both the embeddings and sentences.
:param content: Content list of sentences.
:param ratio: The ratio to use for clustering.
:param algorithm: Type of algorithm to use for clustering.
:param use_first: Return the first sentence in the output (helpful for news stories, etc).
:param num_sentences: Number of sentences to use for summarization.
:return: A tuple of summarized sentences and embeddings
"""
if num_sentences is not None:
num_sentences = num_sentences if use_first else num_sentences
hidden = self.model(
content, self.hidden, self.reduce_option, hidden_concat=self.hidden_concat)
hidden_args = ClusterFeatures(
hidden, algorithm, random_state=self.random_state).cluster(ratio, num_sentences)
if use_first:
if not hidden_args:
hidden_args.append(0)
elif hidden_args[0] != 0:
hidden_args.insert(0, 0)
sentences = [content[j] for j in hidden_args]
embeddings = np.asarray([hidden[j] for j in hidden_args])
return sentences, embeddings
def __run_clusters(
self,
content: List[str],
ratio: float = 0.2,
algorithm: str = 'kmeans',
use_first: bool = True,
num_sentences: int = None
) -> List[str]:
"""
Runs clusters and returns sentences.
:param content: The content of sentences.
:param ratio: Ratio to use for for clustering.
:param algorithm: Algorithm selection for clustering.
:param use_first: Whether to use first sentence
:param num_sentences: Number of sentences. Overrides ratio.
:return: summarized sentences
"""
sentences, _ = self.cluster_runner(
content, ratio, algorithm, use_first, num_sentences)
return sentences
def __retrieve_summarized_embeddings(
self,
content: List[str],
ratio: float = 0.2,
algorithm: str = 'kmeans',
use_first: bool = True,
num_sentences: int = None
) -> np.ndarray:
"""
Retrieves embeddings of the summarized sentences.
:param content: The content of sentences.
:param ratio: Ratio to use for for clustering.
:param algorithm: Algorithm selection for clustering.
:param use_first: Whether to use first sentence
:return: Summarized embeddings
"""
_, embeddings = self.cluster_runner(
content, ratio, algorithm, use_first, num_sentences)
return embeddings
def calculate_elbow(
self,
body: str,
algorithm: str = 'kmeans',
min_length: int = 40,
max_length: int = 600,
k_max: int = None,
) -> List[float]:
"""
Calculates elbow across the clusters.
:param body: The input body to summarize.
:param algorithm: The algorithm to use for clustering.
:param min_length: The min length to use.
:param max_length: The max length to use.
:param k_max: The maximum number of clusters to search.
:return: List of elbow inertia values.
"""
sentences = self.sentence_handler(body, min_length, max_length)
if k_max is None:
k_max = len(sentences) - 1
hidden = self.model(sentences, self.hidden,
self.reduce_option, hidden_concat=self.hidden_concat)
elbow = ClusterFeatures(
hidden, algorithm, random_state=self.random_state).calculate_elbow(k_max)
return elbow
def calculate_optimal_k(
self,
body: str,
algorithm: str = 'kmeans',
min_length: int = 40,
max_length: int = 600,
k_max: int = None,
):
"""
Calculates the optimal Elbow K.
:param body: The input body to summarize.
:param algorithm: The algorithm to use for clustering.
:param min_length: The min length to use.
:param max_length: The max length to use.
:param k_max: The maximum number of clusters to search.
:return:
"""
sentences = self.sentence_handler(body, min_length, max_length)
if k_max is None:
k_max = len(sentences) - 1
hidden = self.model(sentences, self.hidden,
self.reduce_option, hidden_concat=self.hidden_concat)
optimal_k = ClusterFeatures(
hidden, algorithm, random_state=self.random_state).calculate_optimal_cluster(k_max)
return optimal_k
def run_embeddings(
self,
body: str,
ratio: float = 0.2,
min_length: int = 40,
max_length: int = 600,
use_first: bool = True,
algorithm: str = 'kmeans',
num_sentences: int = None,
aggregate: str = None,
) -> Optional[np.ndarray]:
"""
Preprocesses the sentences, runs the clusters to find the centroids, then combines the embeddings.
:param body: The raw string body to process
:param ratio: Ratio of sentences to use
:param min_length: Minimum length of sentence candidates to utilize for the summary.
:param max_length: Maximum length of sentence candidates to utilize for the summary
:param use_first: Whether or not to use the first sentence
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
:param num_sentences: Number of sentences to use. Overrides ratio.
:param aggregate: One of mean, median, max, min. Applied on zero axis
:return: A summary embedding
"""
sentences = self.sentence_handler(body, min_length, max_length)
if sentences:
embeddings = self.__retrieve_summarized_embeddings(
sentences, ratio, algorithm, use_first, num_sentences)
if aggregate is not None:
assert aggregate in [
'mean', 'median', 'max', 'min'], "aggregate must be mean, min, max, or median"
embeddings = self.aggregate_map[aggregate](embeddings, axis=0)
return embeddings
return None
def run(
self,
body: str,
ratio: float = 0.2,
min_length: int = 40,
max_length: int = 600,
use_first: bool = True,
algorithm: str = 'kmeans',
num_sentences: int = None,
return_as_list: bool = False
) -> Union[List, str]:
"""
Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.
:param body: The raw string body to process
:param ratio: Ratio of sentences to use
:param min_length: Minimum length of sentence candidates to utilize for the summary.
:param max_length: Maximum length of sentence candidates to utilize for the summary
:param use_first: Whether or not to use the first sentence
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
:param num_sentences: Number of sentences to use (overrides ratio).
:param return_as_list: Whether or not to return sentences as list.
:return: A summary sentence
"""
sentences = self.sentence_handler(body, min_length, max_length)
if sentences:
sentences = self.__run_clusters(
sentences, ratio, algorithm, use_first, num_sentences)
if return_as_list:
return sentences
else:
return ' '.join(sentences)
def __call__(
self,
body: str,
ratio: float = 0.2,
min_length: int = 40,
max_length: int = 600,
use_first: bool = True,
algorithm: str = 'kmeans',
num_sentences: int = None,
return_as_list: bool = False,
) -> str:
"""
(utility that wraps around the run function)
Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.
:param body: The raw string body to process.
:param ratio: Ratio of sentences to use.
:param min_length: Minimum length of sentence candidates to utilize for the summary.
:param max_length: Maximum length of sentence candidates to utilize for the summary.
:param use_first: Whether or not to use the first sentence.
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
:param Number of sentences to use (overrides ratio).
:param return_as_list: Whether or not to return sentences as list.
:return: A summary sentence.
"""
return self.run(
body, ratio, min_length, max_length, algorithm=algorithm, use_first=use_first, num_sentences=num_sentences,
return_as_list=return_as_list
)
class Summarizer(ModelProcessor):
def __init__(
self,
model: str = 'bert-large-uncased',
custom_model: PreTrainedModel = None,
custom_tokenizer: PreTrainedTokenizer = None,
hidden: Union[List[int], int] = -2,
reduce_option: str = 'mean',
sentence_handler: SentenceHandler = SentenceHandler(),
random_state: int = 12345,
hidden_concat: bool = False,
gpu_id: int = 0,
):
"""
This is the main Bert Summarizer class.
:param model: This parameter is associated with the inherit string parameters from the transformers library.
:param custom_model: If you have a pre-trained model, you can add the model class here.
:param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
:param hidden: This signifies which layer of the BERT model you would like to use as embeddings.
:param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
:param greedyness: associated with the neuralcoref library. Determines how greedy coref should be.
:param language: Which language to use for training.
:param random_state: The random state to reproduce summarizations.
:param hidden_concat: Whether or not to concat multiple hidden layers.
:param gpu_id: GPU device index if CUDA is available.
"""
super(Summarizer, self).__init__(
model, custom_model, custom_tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
)
class TransformerSummarizer(ModelProcessor):
"""
Another type of Summarizer class to choose keyword based model and tokenizer
"""
MODEL_DICT = {
'Bert': (BertModel, BertTokenizer),
'OpenAIGPT': (OpenAIGPTModel, OpenAIGPTTokenizer),
'GPT2': (GPT2Model, GPT2Tokenizer),
'CTRL': (CTRLModel, CTRLTokenizer),
'TransfoXL': (TransfoXLModel, TransfoXLTokenizer),
'XLNet': (XLNetModel, XLNetTokenizer),
'XLM': (XLMModel, XLMTokenizer),
'DistilBert': (DistilBertModel, DistilBertTokenizer),
}
def __init__(
self,
transformer_type: str = 'Bert',
transformer_model_key: str = 'bert-base-uncased',
transformer_tokenizer_key: str = None,
hidden: Union[List[int], int] = -2,
reduce_option: str = 'mean',
sentence_handler: SentenceHandler = SentenceHandler(),
random_state: int = 12345,
hidden_concat: bool = False,
gpu_id: int = 0,
):
"""
:param transformer_type: The Transformer type, such as Bert, GPT2, DistilBert, etc.
:param transformer_model_key: The transformer model key. This is the directory for the model.
:param transformer_tokenizer_key: The transformer tokenizer key. This is the tokenizer directory.
:param hidden: The hidden output layers to use for the summarization.
:param reduce_option: The reduce option, such as mean, max, min, median, etc.
:param sentence_handler: The sentence handler class to process the raw text.
:param random_state: The random state to use.
:param hidden_concat: Deprecated hidden concat option.
:param gpu_id: GPU device index if CUDA is available.
"""
try:
self.MODEL_DICT['Roberta'] = (RobertaModel, RobertaTokenizer)
self.MODEL_DICT['Albert'] = (AlbertModel, AlbertTokenizer)
self.MODEL_DICT['Camembert'] = (CamembertModel, CamembertTokenizer)
self.MODEL_DICT['Bart'] = (BartModel, BartTokenizer)
self.MODEL_DICT['Longformer'] = (LongformerModel, LongformerTokenizer)
except Exception:
pass # older transformer version
model_clz, tokenizer_clz = self.MODEL_DICT[transformer_type]
model = model_clz.from_pretrained(
transformer_model_key, output_hidden_states=True)
tokenizer = tokenizer_clz.from_pretrained(
transformer_tokenizer_key if transformer_tokenizer_key is not None else transformer_model_key
)
super().__init__(
None, model, tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
)
|