import os from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline from transformers import LEDForConditionalGeneration, LEDTokenizer from langchain_openai import OpenAI # from huggingface_hub import login from dotenv import load_dotenv from logging import getLogger # import streamlit as st import torch load_dotenv() hf_token = os.environ.get("HF_TOKEN") # # hf_token = st.secrets["HF_TOKEN"] # login(token=hf_token) logger = getLogger(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" def get_local_model(model_name_or_path:str)->pipeline: #print(f"Model is running on {device}") tokenizer = LEDTokenizer.from_pretrained( #AutoTokenizer.from_pretrained( news changes to support led model_name_or_path, token = hf_token ) model = LEDForConditionalGeneration.from_pretrained( #AutoModelForSeq2SeqLM.from_pretrained( new changes to support led model_name_or_path, torch_dtype=torch.float32, token = hf_token ) pipe = pipeline( task = 'summarization', model=model, tokenizer=tokenizer, device = device, ) logger.info(f"Summarization pipeline created and loaded to {device}") return pipe def get_endpoint(api_key:str): llm = OpenAI(openai_api_key=api_key) return llm def get_model(model_type,model_name_or_path,api_key = None): if model_type == "openai": return get_endpoint(api_key) else: return get_local_model(model_name_or_path)