pigeon-avatar / app.py
ItzRoBeerT's picture
Update app.py
0a5fba5 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import io
from PIL import Image
import requests
import random
import dom
import os
import time
NUM_IMAGES = 2
# Configuración del dispositivo
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
# Configuración de modelos
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
headers = {"Authorization": f"Bearer {os.getenv('api_token')}"}
model_id_image_description = "vikhyatk/moondream2"
revision = "2024-08-26"
# Para medir el rendimiento de los métodos, voy a crear este decorador, que simplemente imprime en nuestra terminal
# el tiempo de ejecucion de los metodos que tengan los modelos y los usen, de esta manera podremos estudiar
# el tiempo que este cada modelo activo
def measure_performance(func):
def wrapper(*args, **kwargs):
print(f"Starting execution of '{func.__name__}' with 'args={args}, kwargs={kwargs}'")
start = time.time()
result = func(*args, **kwargs)
end = time.time()
duration = end - start
print(f"Execution time of '{func.__name__}' with 'args={args}, kwargs={kwargs}': {duration:.4f} seconds")
return result
return wrapper
torch_dtype = torch.float32
if torch.cuda.is_available():
torch_dtype = torch.bfloat16 # Optimización en GPU
# Carga de modelos persistente
print("Cargando modelo de descripción de imágenes...")
model_description = AutoModelForCausalLM.from_pretrained(model_id_image_description, trust_remote_code=True, revision=revision)
tokenizer_description = AutoTokenizer.from_pretrained(model_id_image_description, revision=revision)
@measure_performance
def generate_description(image_path):
image_test = Image.open(image_path)
enc_image = model_description.encode_image(image_test)
description = model_description.answer_question(enc_image, "Describe this image to create an avatar", tokenizer_description)
return description
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
@measure_performance
def generate_image_by_description(description, avatar_style=None):
images = []
for _ in range(NUM_IMAGES):
prompt = f"Create a pigeon profile avatar. Use the following description: {description}."
if avatar_style:
prompt += f" Use {avatar_style} style."
image_bytes = query({"inputs": prompt, "parameters": {"seed": random.randint(0, 1000)}})
image = Image.open(io.BytesIO(image_bytes))
images.append(image)
return images
def process_and_generate(image, avatar_style):
description = generate_description(image)
return generate_image_by_description(description, avatar_style)
with gr.Blocks(js=dom.generate_title) as demo:
with gr.Row():
with gr.Column(scale=2, min_width=300):
selected_image = gr.Image(type="filepath", label="Upload an Image of the Pigeon", height=300)
example_image = gr.Examples(["./examples/pigeon.webp"], label="Example Images", inputs=[selected_image])
avatar_style = gr.Radio(
["Realistic", "Pixel Art", "Imaginative", "Cartoon"],
label="(optional) Select the avatar style:",
value="Pixel Art"
)
generate_button = gr.Button("Generate Avatar", variant="primary")
with gr.Column(scale=2, min_width=300):
generated_image = gr.Gallery(type="pil", label="Generated Avatar", height=300)
generate_button.click(process_and_generate, inputs=[selected_image, avatar_style], outputs=generated_image)
with gr.Tab(label="Description"):
gr.Markdown(dom.generate_markdown)
gr.Markdown(dom.models)
with gr.Tab(label="Documentation"):
gr.Markdown(dom.doccumentation)
demo.launch()