Spaces:
Running
Running
ItzRoBeerT
commited on
Commit
•
8e4035c
1
Parent(s):
8fc1f74
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
model_id = "CompVis/stable-diffusion-v1-4"
|
9 |
torch_dtype = torch.float32
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.bfloat16
|
13 |
|
14 |
def generate_description(image):
|
15 |
-
model =
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe = pipe.to(device)
|
21 |
pipe.enable_attention_slicing()
|
22 |
-
|
23 |
prompt = (
|
24 |
-
f"
|
25 |
-
f"
|
26 |
)
|
|
|
|
|
|
|
|
|
27 |
image = pipe(prompt).images[0]
|
28 |
return image
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
31 |
with gr.Blocks() as demo:
|
32 |
with gr.Row():
|
33 |
with gr.Column(scale=2, min_width=300):
|
34 |
selected_image = gr.Image(type="filepath", label="Upload an Image of the Pigeon",height=300)
|
|
|
|
|
35 |
generate_button = gr.Button("Generate Avatar", variant="primary")
|
36 |
with gr.Column(scale=2, min_width=300):
|
37 |
generated_image = gr.Image(type="numpy", label="Generated Avatar", height=300)
|
38 |
-
|
39 |
-
description = generate_description(image)
|
40 |
-
return generate_image_by_description(description)
|
41 |
-
|
42 |
-
generate_button.click(process_and_generate, inputs=selected_image, outputs=generated_image)
|
43 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
from diffusers import StableDiffusionPipeline
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
device = "cpu"
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
device = "cuda"
|
11 |
+
elif torch.mps.is_available():
|
12 |
+
device = "mps"
|
13 |
+
|
14 |
+
model_id_image = "CompVis/stable-diffusion-v1-4"
|
15 |
+
model_id_image_description = "vikhyatk/moondream2"
|
16 |
+
revision = "2024-08-26"
|
17 |
|
|
|
|
|
18 |
torch_dtype = torch.float32
|
19 |
|
20 |
if torch.cuda.is_available():
|
21 |
torch_dtype = torch.bfloat16
|
22 |
|
23 |
def generate_description(image):
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(model_id_image_description, trust_remote_code=True, revision=revision)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id_image_description, revision=revision)
|
26 |
|
27 |
+
image_test = Image.open(image)
|
28 |
+
enc_image = model.encode_image(image_test)
|
29 |
+
res = model.answer_question(enc_image, "Describe this image to create an avatar", tokenizer)
|
30 |
+
return res
|
31 |
+
|
32 |
+
def generate_image_by_description(description, avatar_style=None):
|
33 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id_image, torch_dtype=torch_dtype)
|
34 |
pipe = pipe.to(device)
|
35 |
pipe.enable_attention_slicing()
|
36 |
+
|
37 |
prompt = (
|
38 |
+
f"Create a pigeon profile avatar. "
|
39 |
+
f"Use the following description: {description}. "
|
40 |
)
|
41 |
+
|
42 |
+
if avatar_style:
|
43 |
+
prompt += f"Use {avatar_style} avatar style."
|
44 |
+
|
45 |
image = pipe(prompt).images[0]
|
46 |
return image
|
47 |
|
48 |
|
49 |
+
def process_and_generate(image, avatar_style):
|
50 |
+
description = generate_description(image)
|
51 |
+
return generate_image_by_description(description, avatar_style)
|
52 |
+
|
53 |
with gr.Blocks() as demo:
|
54 |
with gr.Row():
|
55 |
with gr.Column(scale=2, min_width=300):
|
56 |
selected_image = gr.Image(type="filepath", label="Upload an Image of the Pigeon",height=300)
|
57 |
+
avatar_style = gr.Radio(
|
58 |
+
["Realistic", "Pixel Art", "Imaginative", "Cartoon"], label="(optional) Select the avatar style:")
|
59 |
generate_button = gr.Button("Generate Avatar", variant="primary")
|
60 |
with gr.Column(scale=2, min_width=300):
|
61 |
generated_image = gr.Image(type="numpy", label="Generated Avatar", height=300)
|
62 |
+
generate_button.click(process_and_generate, inputs=[selected_image, avatar_style ], outputs=generated_image)
|
|
|
|
|
|
|
|
|
63 |
demo.launch()
|