Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import VitsModel, VitsTokenizer, pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# load text-to-speech checkpoint | |
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu") | |
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu") | |
model.to(device) | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "german"}) | |
return outputs["text"] | |
def synthesize(text): | |
input = tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
output = model(input['input_ids'].to(device)) | |
return output.audio[0].cpu() | |
target_dtype = np.int16 # output audio file format expected by Gradio | |
max_range = np.iinfo(target_dtype).max | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesized_speech = synthesize(translated_text) | |
# normalize audio array by dynamic range of target dtype for Gradio | |
synthesized_speech = (synthesized_speech.numpy() * max_range).astype(target_dtype) | |
return 16000, synthesized_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's | |
[MMS](https://huggingface.co/facebook/mms-tts) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch(debug=True) | |