import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import VitsModel, VitsTokenizer, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # load text-to-speech checkpoint tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu") model = VitsModel.from_pretrained("Matthijs/mms-tts-deu") model.to(device) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "german"}) return outputs["text"] def synthesize(text): input = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(input['input_ids'].to(device)) return output.audio[0].cpu() target_dtype = np.int16 # output audio file format expected by Gradio max_range = np.iinfo(target_dtype).max def speech_to_speech_translation(audio): translated_text = translate(audio) synthesized_speech = synthesize(translated_text) # normalize audio array by dynamic range of target dtype for Gradio synthesized_speech = (synthesized_speech.numpy() * max_range).astype(target_dtype) return 16000, synthesized_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's [MMS](https://huggingface.co/facebook/mms-tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch(debug=True)