Spaces:
Sleeping
Sleeping
File size: 5,836 Bytes
5cd81d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import Replicate
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from deep_translator import GoogleTranslator
import os
import tempfile
# Initialize session state
def initialize_session_state():
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello! Ask me about your file π€"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey! π"]
if 'selected_languages' not in st.session_state:
st.session_state['selected_languages'] = []
# Conversation chat function with translation
def conversation_chat(query, chain, history, selected_languages):
translated_queries = [GoogleTranslator(source='auto', target=lang).translate(query) for lang in selected_languages]
result = chain({"question": query, "chat_history": history})
translated_answers = [GoogleTranslator(source='auto', target=lang).translate(result["answer"]) for lang in selected_languages]
history.append((query, result["answer"]))
return translated_answers
# Display chat history
def display_chat_history(chain, selected_languages):
reply_container = st.container()
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
with st.spinner('Generating response...'):
output = conversation_chat(user_input, chain, st.session_state['history'], selected_languages)
st.session_state['past'].append(user_input)
st.session_state['generated'].extend(output)
if st.session_state['generated']:
with reply_container:
for i in range(len(st.session_state['generated'])):
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
message(st.session_state["generated"][i], key=str(i), avatar_style="bottts")
# Create conversational chain
def create_conversational_chain(vector_store):
replicate_api_token = "r8_47kvoIaHBIPYgBBoiGSrmoTN3cgazu71MyjHh"
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
llm = Replicate(
streaming=True,
model="replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
callbacks=[StreamingStdOutCallbackHandler()],
input={"temperature": 0.01, "max_length": 500, "top_p": 1},
replicate_api_token=replicate_api_token
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
memory=memory)
return chain
# Main function
def main():
initialize_session_state()
# Header and Tagline
st.title("LANGSMITH BOT")
st.subheader("Your Professional Assistant for Document Insights")
# Main interface
st.sidebar.title("Document Processing π")
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
languages = ["en", "es", "fr", "de", "it", "pt", "zh", "ja", "ko", "hi", "sa"]
language_labels = {
"en": "English", "es": "Spanish", "fr": "French", "de": "German",
"it": "Italian", "pt": "Portuguese", "zh": "Chinese", "ja": "Japanese",
"ko": "Korean", "hi": "Hindi", "sa": "Sanskrit"
}
selected_languages = st.sidebar.multiselect("Select languages for conversation", languages, format_func=lambda x: language_labels[x])
st.session_state['selected_languages'] = selected_languages
if uploaded_files:
text = []
for file in uploaded_files:
file_extension = os.path.splitext(file.name)[1]
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.read())
temp_file_path = temp_file.name
loader = None
if file_extension == ".pdf":
loader = PyPDFLoader(temp_file_path)
elif file_extension == ".docx" or file_extension == ".doc":
loader = Docx2txtLoader(temp_file_path)
elif file_extension == ".txt":
loader = TextLoader(temp_file_path)
if loader:
text.extend(loader.load())
os.remove(temp_file_path)
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
text_chunks = text_splitter.split_documents(text)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
chain = create_conversational_chain(vector_store)
display_chat_history(chain, st.session_state['selected_languages'])
# Add a footer
st.markdown("---")
st.markdown("Team Chandrama: Shine with Glory!!!! β¨π")
if __name__ == "__main__":
main() |