JERNGOC commited on
Commit
5cd81d3
β€’
1 Parent(s): 2d926fc

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +134 -0
  2. requirements.txt +16 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ from langchain.chains import ConversationalRetrievalChain
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.llms import Replicate
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+ from langchain.vectorstores import FAISS
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
10
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
11
+ from deep_translator import GoogleTranslator
12
+ import os
13
+ import tempfile
14
+
15
+ # Initialize session state
16
+ def initialize_session_state():
17
+ if 'history' not in st.session_state:
18
+ st.session_state['history'] = []
19
+
20
+ if 'generated' not in st.session_state:
21
+ st.session_state['generated'] = ["Hello! Ask me about your file πŸ€–"]
22
+
23
+ if 'past' not in st.session_state:
24
+ st.session_state['past'] = ["Hey! πŸ‘‹"]
25
+
26
+ if 'selected_languages' not in st.session_state:
27
+ st.session_state['selected_languages'] = []
28
+
29
+ # Conversation chat function with translation
30
+ def conversation_chat(query, chain, history, selected_languages):
31
+ translated_queries = [GoogleTranslator(source='auto', target=lang).translate(query) for lang in selected_languages]
32
+ result = chain({"question": query, "chat_history": history})
33
+ translated_answers = [GoogleTranslator(source='auto', target=lang).translate(result["answer"]) for lang in selected_languages]
34
+ history.append((query, result["answer"]))
35
+ return translated_answers
36
+
37
+ # Display chat history
38
+ def display_chat_history(chain, selected_languages):
39
+ reply_container = st.container()
40
+ container = st.container()
41
+
42
+ with container:
43
+ with st.form(key='my_form', clear_on_submit=True):
44
+ user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
45
+ submit_button = st.form_submit_button(label='Send')
46
+
47
+ if submit_button and user_input:
48
+ with st.spinner('Generating response...'):
49
+ output = conversation_chat(user_input, chain, st.session_state['history'], selected_languages)
50
+
51
+ st.session_state['past'].append(user_input)
52
+ st.session_state['generated'].extend(output)
53
+
54
+ if st.session_state['generated']:
55
+ with reply_container:
56
+ for i in range(len(st.session_state['generated'])):
57
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
58
+ message(st.session_state["generated"][i], key=str(i), avatar_style="bottts")
59
+
60
+ # Create conversational chain
61
+ def create_conversational_chain(vector_store):
62
+ replicate_api_token = "r8_47kvoIaHBIPYgBBoiGSrmoTN3cgazu71MyjHh"
63
+ os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
64
+
65
+ llm = Replicate(
66
+ streaming=True,
67
+ model="replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
68
+ callbacks=[StreamingStdOutCallbackHandler()],
69
+ input={"temperature": 0.01, "max_length": 500, "top_p": 1},
70
+ replicate_api_token=replicate_api_token
71
+ )
72
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
73
+
74
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
75
+ retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
76
+ memory=memory)
77
+ return chain
78
+
79
+ # Main function
80
+ def main():
81
+ initialize_session_state()
82
+
83
+ # Header and Tagline
84
+ st.title("LANGSMITH BOT")
85
+ st.subheader("Your Professional Assistant for Document Insights")
86
+
87
+ # Main interface
88
+ st.sidebar.title("Document Processing πŸ“‚")
89
+ uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
90
+
91
+ languages = ["en", "es", "fr", "de", "it", "pt", "zh", "ja", "ko", "hi", "sa"]
92
+ language_labels = {
93
+ "en": "English", "es": "Spanish", "fr": "French", "de": "German",
94
+ "it": "Italian", "pt": "Portuguese", "zh": "Chinese", "ja": "Japanese",
95
+ "ko": "Korean", "hi": "Hindi", "sa": "Sanskrit"
96
+ }
97
+ selected_languages = st.sidebar.multiselect("Select languages for conversation", languages, format_func=lambda x: language_labels[x])
98
+ st.session_state['selected_languages'] = selected_languages
99
+
100
+ if uploaded_files:
101
+ text = []
102
+ for file in uploaded_files:
103
+ file_extension = os.path.splitext(file.name)[1]
104
+ with tempfile.NamedTemporaryFile(delete=False) as temp_file:
105
+ temp_file.write(file.read())
106
+ temp_file_path = temp_file.name
107
+
108
+ loader = None
109
+ if file_extension == ".pdf":
110
+ loader = PyPDFLoader(temp_file_path)
111
+ elif file_extension == ".docx" or file_extension == ".doc":
112
+ loader = Docx2txtLoader(temp_file_path)
113
+ elif file_extension == ".txt":
114
+ loader = TextLoader(temp_file_path)
115
+
116
+ if loader:
117
+ text.extend(loader.load())
118
+ os.remove(temp_file_path)
119
+
120
+ text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
121
+ text_chunks = text_splitter.split_documents(text)
122
+
123
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
124
+ model_kwargs={'device': 'cpu'})
125
+ vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
126
+ chain = create_conversational_chain(vector_store)
127
+ display_chat_history(chain, st.session_state['selected_languages'])
128
+
129
+ # Add a footer
130
+ st.markdown("---")
131
+ st.markdown("Team Chandrama: Shine with Glory!!!! βœ¨πŸš€")
132
+
133
+ if __name__ == "__main__":
134
+ main()
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ langchain
2
+ torch
3
+ accelerate
4
+ sentence_transformers
5
+ streamlit_chat
6
+ streamlit
7
+ faiss-cpu
8
+ tiktoken
9
+ ctransformers
10
+ huggingface-hub
11
+ pypdf
12
+ python-dotenv
13
+ replicate
14
+ docx2txt
15
+ langchain-community
16
+ deep-translator