import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import Replicate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from deep_translator import GoogleTranslator import os import tempfile # Initialize session state def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me about your file 🤖"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! 👋"] if 'selected_languages' not in st.session_state: st.session_state['selected_languages'] = [] # Conversation chat function with translation def conversation_chat(query, chain, history, selected_languages): translated_queries = [GoogleTranslator(source='auto', target=lang).translate(query) for lang in selected_languages] result = chain({"question": query, "chat_history": history}) translated_answers = [GoogleTranslator(source='auto', target=lang).translate(result["answer"]) for lang in selected_languages] history.append((query, result["answer"])) return translated_answers # Display chat history def display_chat_history(chain, selected_languages): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: with st.spinner('Generating response...'): output = conversation_chat(user_input, chain, st.session_state['history'], selected_languages) st.session_state['past'].append(user_input) st.session_state['generated'].extend(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="bottts") # Create conversational chain def create_conversational_chain(vector_store): replicate_api_token = "r8_47kvoIaHBIPYgBBoiGSrmoTN3cgazu71MyjHh" os.environ["REPLICATE_API_TOKEN"] = replicate_api_token llm = Replicate( streaming=True, model="replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", callbacks=[StreamingStdOutCallbackHandler()], input={"temperature": 0.01, "max_length": 500, "top_p": 1}, replicate_api_token=replicate_api_token ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k": 2}), memory=memory) return chain # Main function def main(): initialize_session_state() # Header and Tagline st.title("LANGSMITH BOT") st.subheader("Your Professional Assistant for Document Insights") # Main interface st.sidebar.title("Document Processing 📂") uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True) languages = ["en", "es", "fr", "de", "it", "pt", "zh", "ja", "ko", "hi", "sa"] language_labels = { "en": "English", "es": "Spanish", "fr": "French", "de": "German", "it": "Italian", "pt": "Portuguese", "zh": "Chinese", "ja": "Japanese", "ko": "Korean", "hi": "Hindi", "sa": "Sanskrit" } selected_languages = st.sidebar.multiselect("Select languages for conversation", languages, format_func=lambda x: language_labels[x]) st.session_state['selected_languages'] = selected_languages if uploaded_files: text = [] for file in uploaded_files: file_extension = os.path.splitext(file.name)[1] with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(file.read()) temp_file_path = temp_file.name loader = None if file_extension == ".pdf": loader = PyPDFLoader(temp_file_path) elif file_extension == ".docx" or file_extension == ".doc": loader = Docx2txtLoader(temp_file_path) elif file_extension == ".txt": loader = TextLoader(temp_file_path) if loader: text.extend(loader.load()) os.remove(temp_file_path) text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len) text_chunks = text_splitter.split_documents(text) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) vector_store = FAISS.from_documents(text_chunks, embedding=embeddings) chain = create_conversational_chain(vector_store) display_chat_history(chain, st.session_state['selected_languages']) # Add a footer st.markdown("---") st.markdown("Team Chandrama: Shine with Glory!!!! ✨🚀") if __name__ == "__main__": main()