Update app.py
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ if uploaded_file is not None:
|
|
40 |
# 使用保存的 K-means 模型進行聚類
|
41 |
kmeans_labels = kmeans.predict(pca_df)
|
42 |
|
43 |
-
#
|
44 |
hclust_labels = fcluster(linked, 3, criterion='maxclust')
|
45 |
|
46 |
# 使用保存的 DBSCAN 模型進行聚類
|
@@ -49,12 +49,12 @@ if uploaded_file is not None:
|
|
49 |
# ================== 圖表選擇 ==================
|
50 |
chart_option = st.selectbox(
|
51 |
"選擇要顯示的聚類結果圖表",
|
52 |
-
("K-means", "
|
53 |
)
|
54 |
|
55 |
# ================== 根據選擇顯示對應的圖表 ==================
|
56 |
if chart_option == "K-means":
|
57 |
-
st.subheader("K-
|
58 |
fig_kmeans, ax_kmeans = plt.subplots()
|
59 |
ax_kmeans.scatter(pca_df['PC1'], pca_df['PC2'], c=kmeans_labels, cmap='viridis')
|
60 |
ax_kmeans.set_title('K-means Clustering')
|
@@ -62,8 +62,8 @@ if uploaded_file is not None:
|
|
62 |
ax_kmeans.set_ylabel('PC2')
|
63 |
st.pyplot(fig_kmeans)
|
64 |
|
65 |
-
elif chart_option == "
|
66 |
-
st.subheader("階層式聚類結果")
|
67 |
fig_hclust, ax_hclust = plt.subplots()
|
68 |
ax_hclust.scatter(pca_df['PC1'], pca_df['PC2'], c=hclust_labels, cmap='viridis')
|
69 |
ax_hclust.set_title('Hierarchical Clustering')
|
@@ -72,7 +72,7 @@ if uploaded_file is not None:
|
|
72 |
st.pyplot(fig_hclust)
|
73 |
|
74 |
elif chart_option == "DBSCAN":
|
75 |
-
st.subheader("
|
76 |
fig_dbscan, ax_dbscan = plt.subplots()
|
77 |
ax_dbscan.scatter(pca_df['PC1'], pca_df['PC2'], c=dbscan_labels, cmap='viridis')
|
78 |
ax_dbscan.set_title('DBSCAN Clustering')
|
|
|
40 |
# 使用保存的 K-means 模型進行聚類
|
41 |
kmeans_labels = kmeans.predict(pca_df)
|
42 |
|
43 |
+
# 使用保存的Hierarchical Clustering 階層式聚類結果
|
44 |
hclust_labels = fcluster(linked, 3, criterion='maxclust')
|
45 |
|
46 |
# 使用保存的 DBSCAN 模型進行聚類
|
|
|
49 |
# ================== 圖表選擇 ==================
|
50 |
chart_option = st.selectbox(
|
51 |
"選擇要顯示的聚類結果圖表",
|
52 |
+
("K-means", "Hierarchical Clustering", "DBSCAN")
|
53 |
)
|
54 |
|
55 |
# ================== 根據選擇顯示對應的圖表 ==================
|
56 |
if chart_option == "K-means":
|
57 |
+
st.subheader("K-means_聚類結果")
|
58 |
fig_kmeans, ax_kmeans = plt.subplots()
|
59 |
ax_kmeans.scatter(pca_df['PC1'], pca_df['PC2'], c=kmeans_labels, cmap='viridis')
|
60 |
ax_kmeans.set_title('K-means Clustering')
|
|
|
62 |
ax_kmeans.set_ylabel('PC2')
|
63 |
st.pyplot(fig_kmeans)
|
64 |
|
65 |
+
elif chart_option == "Hierarchical Clustering":
|
66 |
+
st.subheader("Hierarchical Clustering_階層式聚類結果")
|
67 |
fig_hclust, ax_hclust = plt.subplots()
|
68 |
ax_hclust.scatter(pca_df['PC1'], pca_df['PC2'], c=hclust_labels, cmap='viridis')
|
69 |
ax_hclust.set_title('Hierarchical Clustering')
|
|
|
72 |
st.pyplot(fig_hclust)
|
73 |
|
74 |
elif chart_option == "DBSCAN":
|
75 |
+
st.subheader("DBSCAN_聚類結果")
|
76 |
fig_dbscan, ax_dbscan = plt.subplots()
|
77 |
ax_dbscan.scatter(pca_df['PC1'], pca_df['PC2'], c=dbscan_labels, cmap='viridis')
|
78 |
ax_dbscan.set_title('DBSCAN Clustering')
|