import pytest from path_analysis.analyse import * from path_analysis.data_preprocess import RemovedPeakData import numpy as np from math import pi import xml.etree.ElementTree as ET from PIL import ImageChops def test_draw_paths_no_error(): all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] foci_stack = np.zeros((5, 5, 5)) foci_stack[0,0,0] = 1.0 foci_index = [[0], [1]] r = 3 try: im = draw_paths(all_paths, foci_stack, foci_index, r) except Exception as e: pytest.fail(f"draw_paths raised an exception: {e}") def test_draw_paths_image_size(): all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] foci_stack = np.zeros((5, 5, 5)) foci_stack[0,0,0] = 1.0 foci_index = [[0], [1]] r = 3 im = draw_paths(all_paths, foci_stack, foci_index, r) assert im.size == (5, 5), f"Expected image size (5, 5), got {im.size}" def test_draw_paths_image_modified(): all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] foci_stack = np.zeros((5, 5, 5)) foci_stack[0,0,0] = 1.0 foci_index = [[0], [1]] r = 3 im = draw_paths(all_paths, foci_stack, foci_index, r) blank_image = Image.new("RGB", (5, 5), "black") # Check if the image is not entirely black (i.e., has been modified) diff = ImageChops.difference(im, blank_image) assert diff.getbbox() is not None, "The image has not been modified" def test_calculate_path_length_partials_default_voxel(): point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 1)] expected_result = np.array([0.0, 1.0, 1.0+np.sqrt(2)]) result = calculate_path_length_partials(point_list) np.testing.assert_allclose(result, expected_result, atol=1e-5) def test_calculate_path_length_partials_custom_voxel(): point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 0)] voxel_size = (1, 2, 1) expected_result = np.array([0.0, 1.0, 3.0]) result = calculate_path_length_partials(point_list, voxel_size=voxel_size) np.testing.assert_allclose(result, expected_result, atol=1e-5) def test_calculate_path_length_partials_single_point(): point_list = [(0, 0, 0)] expected_result = np.array([0.0]) result = calculate_path_length_partials(point_list) np.testing.assert_allclose(result, expected_result, atol=1e-5) def test_get_paths_from_traces_file(): # Mock the XML traces file content xml_content = ''' ''' # Create a temporary XML file with open("temp_traces.xml", "w") as f: f.write(xml_content) all_paths, path_lengths = get_paths_from_traces_file("temp_traces.xml") expected_paths = [[(1, 2, 3), (4, 5, 6)], [(7, 8, 9), (10, 11, 12)]] expected_lengths = [5.0, 10.0] assert all_paths == expected_paths, f"Expected paths {expected_paths}, but got {all_paths}" assert path_lengths == expected_lengths, f"Expected lengths {expected_lengths}, but got {path_lengths}" # Clean up temporary file import os os.remove("temp_traces.xml") def test_measure_chrom2(): # Mock data path = [(2, 3, 4), (4, 5, 6), (9, 9, 9)] # Sample ordered path points intensity = np.random.rand(10, 10, 10) # Random 3D fluorescence data config = { 'z_res': 1, 'xy_res': 0.5, 'sphere_radius': 2.5 } # Function call _, measurements, measurements_max = measure_chrom2(path, intensity, config) # Assertions assert len(measurements) == len(path), "Measurements length should match path length" assert len(measurements_max) == len(path), "Max measurements length should match path length" assert all(0 <= val <= 1 for val in measurements), "All mean measurements should be between 0 and 1 for this mock data" assert all(0 <= val <= 1 for val in measurements_max), "All max measurements should be between 0 and 1 for this mock data" def test_measure_chrom2_z(): # Mock data path = [(2, 3, 4), (4, 5, 6)] # Sample ordered path points _,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent config = { 'z_res': 1, 'xy_res': 0.5, 'sphere_radius': 2.5 } # Function call _, measurements, measurements_max = measure_chrom2(path, intensity, config) # Assertions assert len(measurements) == len(path), "Measurements length should match path length" assert len(measurements_max) == len(path), "Max measurements length should match path length" assert all(measurements == np.array([4,6])) assert all(measurements_max == np.array([6,8])) def test_measure_chrom2_z2(): # Mock data path = [(0,0,0), (2, 3, 4), (4, 5, 6)] # Sample ordered path points _,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent config = { 'z_res': 0.25, 'xy_res': 0.5, 'sphere_radius': 2.5 } # Function call _, measurements, measurements_max = measure_chrom2(path, intensity, config) # Assertions assert len(measurements) == len(path), "Measurements length should match path length" assert len(measurements_max) == len(path), "Max measurements length should match path length" assert all(measurements_max == np.array([9,9,9])) def test_measure_from_mask(): mask = np.array([ [0, 1, 0], [1, 1, 1], [0, 1, 0] ]) measure_stack = np.array([ [2, 4, 2], [4, 8, 4], [2, 4, 2] ]) result = measure_from_mask(mask, measure_stack) assert result == 24 # Expected sum: 4+4+8+4+4 def test_max_from_mask(): mask = np.array([ [0, 1, 0], [1, 1, 1], [0, 1, 0] ]) measure_stack = np.array([ [2, 5, 2], [4, 8, 3], [2, 7, 2] ]) result = max_from_mask(mask, measure_stack) assert result == 8 # Expected max: 8 def test_measure_at_point_mean(): measure_stack = np.array([ [[2, 2, 2, 0], [4, 4, 6, 0], [3, 3, 2, 0], [0, 0, 0, 0]], [[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], [[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ]) p = (1, 1, 1) melem = np.ones((3, 3, 3)) result = measure_at_point(p, melem, measure_stack, op='mean') assert result == 4, "Expected mean: 4" def test_measure_at_point_mean_off1(): measure_stack = np.array([ [[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], [[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], [[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ]) p = (0, 0, 0) melem = np.ones((3, 3, 3)) result = measure_at_point(p, melem, measure_stack, op='mean') assert result == 4.5, "Expected mean: 4.5" def test_measure_at_point_mean_off2(): measure_stack = np.array([ [[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], [[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], [[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ]) p = (3, 1, 1) melem = np.ones((3, 3, 3)) print(measure_stack[p[0], p[1], p[2]]) result = measure_at_point(p, melem, measure_stack, op='mean') assert result == 32/18 # Expected mean: 4.5 def test_measure_at_point_mean_off3(): measure_stack = np.array([ [[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], [[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], [[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ]) p = (3, 1, 1) melem = np.ones((1, 1, 3)) print(measure_stack[p[0], p[1], p[2]]) result = measure_at_point(p, melem, measure_stack, op='mean') assert result == 0, "Expected mean: 4.5" def test_measure_at_point_mean_off3(): measure_stack = np.array([ [[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], [[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], [[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ]) p = (3, 1, 1) melem = np.ones((3, 1, 1)) print(measure_stack[p[0], p[1], p[2]]) result = measure_at_point(p, melem, measure_stack, op='mean') assert result == 3, "Expected mean: 4.5" def test_measure_at_point_max(): measure_stack = np.array([ [[2, 2, 2], [4, 4, 4], [2, 2, 2]], [[4, 5, 4], [8, 7, 9], [4, 4, 4]], [[2, 2, 2], [4, 4, 4], [2, 2, 2]] ]) p = (1, 1, 1) melem = np.ones((3, 3, 3)) result = measure_at_point(p, melem, measure_stack, op='max') assert result == 9, "Expected max: 9" def test_make_sphere_equal(): R = 5 z_scale_ratio = 1.0 sphere = make_sphere(R, z_scale_ratio) # Check the returned type assert isinstance(sphere, np.ndarray), "Output should be a numpy ndarray" # Check the shape expected_shape = (2*R+1, 2*R+1, 2*R+1) assert sphere.shape == expected_shape, f"Expected shape {expected_shape}, but got {sphere.shape}" assert (sphere[:,:,::-1] == sphere).all(), f"Expected symmetrical mask" assert (sphere[:,::-1,:] == sphere).all(), f"Expected symmetrical mask" assert (sphere[::-1,:,:] == sphere).all(), f"Expected symmetrical mask" assert abs(np.sum(sphere)-4/3*pi*R**3)<10, f"Expected approximate volume to be correct" assert (sphere[R,R,0] == 1), f"Expected centre point on top plane to be within sphere" assert (sphere[R+1,R,0] == 0), f"Expected point next to centre on top plane to be outside sphere" import pandas as pd def test_extract_peaks_basic(): cell_id = 1 # Simple per-cell tag all_paths = [[[0, 0, 0], [1, 1, 0]]] # Single, simple path path_lengths = [1.41] # length of the above path measured_traces = [[100, 200]] # fluorescence along the path config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 } df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) assert len(df) == 1, "Expected one row in DataFrame" assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" assert list(df['Trace_foci_number']) == [1], "Wrong foci number" assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) assert foci_pos_index == [[1]] assert foci_absolute_intensity == [[200]] assert screened_foci_data == [[]] assert trace_thresholds == [ [ 150+0.4*50] ] assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) def test_extract_peaks_multiple_paths(): cell_id = 1 all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]] path_lengths = [1.41, 1.41] measured_traces = [[100, 200], [100, 140]] config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 } df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) assert len(df) == 2, "Expected two rows in DataFrame" assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" assert list(df['Trace_foci_number']) == [1,1], "Wrong foci number" assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) print(foci_pos_index) assert list(map(list, foci_pos_index)) == [[1],[1]] assert list(map(list, foci_absolute_intensity)) == [[200],[140]] assert trace_thresholds == [ 150+0.4*50, 120+0.4*20 ] assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) assert screened_foci_data == [[],[]] def test_extract_peaks_multiple_paths_screened(): cell_id = 1 all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 2], [2, 2, 2]]] path_lengths = [1.41, 1.41] measured_traces = [[100, 200], [100, 150]] config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 } df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) assert len(df) == 2, "Expected two rows in DataFrame" assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number" assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) print(foci_pos_index) assert list(map(list, foci_pos_index)) == [[1],[]] assert list(map(list, foci_absolute_intensity)) == [[200],[]] assert trace_thresholds == [ 150+0.4*50, None ] assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) assert screened_foci_data == [[],[RemovedPeakData(idx=1, screening_peak=(0,1))]] def test_extract_peaks_multiple_paths_per_cell(): cell_id = 1 all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]] path_lengths = [1.41, 1.41] measured_traces = [[100, 200], [100, 140]] config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 } df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) assert len(df) == 2, "Expected two rows in DataFrame" assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number" assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) assert list(map(list, foci_pos_index)) == [[1],[]] assert list(map(list, foci_absolute_intensity)) == [[200],[]] assert trace_thresholds == [ 150+0.4*50, 120+0.4*50 ] assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) assert screened_foci_data == [[],[]]