Spaces:
Sleeping
Sleeping
import pytest | |
from path_analysis.analyse import * | |
from path_analysis.data_preprocess import RemovedPeakData | |
import numpy as np | |
from math import pi | |
import xml.etree.ElementTree as ET | |
from PIL import ImageChops | |
def test_draw_paths_no_error(): | |
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] | |
foci_stack = np.zeros((5, 5, 5)) | |
foci_stack[0,0,0] = 1.0 | |
foci_index = [[0], [1]] | |
r = 3 | |
try: | |
im = draw_paths(all_paths, foci_stack, foci_index, r) | |
except Exception as e: | |
pytest.fail(f"draw_paths raised an exception: {e}") | |
def test_draw_paths_image_size(): | |
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] | |
foci_stack = np.zeros((5, 5, 5)) | |
foci_stack[0,0,0] = 1.0 | |
foci_index = [[0], [1]] | |
r = 3 | |
im = draw_paths(all_paths, foci_stack, foci_index, r) | |
assert im.size == (5, 5), f"Expected image size (5, 5), got {im.size}" | |
def test_draw_paths_image_modified(): | |
all_paths = [[[0, 0], [1, 1]], [[2, 2], [3, 3]]] | |
foci_stack = np.zeros((5, 5, 5)) | |
foci_stack[0,0,0] = 1.0 | |
foci_index = [[0], [1]] | |
r = 3 | |
im = draw_paths(all_paths, foci_stack, foci_index, r) | |
blank_image = Image.new("RGB", (5, 5), "black") | |
# Check if the image is not entirely black (i.e., has been modified) | |
diff = ImageChops.difference(im, blank_image) | |
assert diff.getbbox() is not None, "The image has not been modified" | |
def test_calculate_path_length_partials_default_voxel(): | |
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 1)] | |
expected_result = np.array([0.0, 1.0, 1.0+np.sqrt(2)]) | |
result = calculate_path_length_partials(point_list) | |
np.testing.assert_allclose(result, expected_result, atol=1e-5) | |
def test_calculate_path_length_partials_custom_voxel(): | |
point_list = [(0, 0, 0), (1, 0, 0), (1, 1, 0)] | |
voxel_size = (1, 2, 1) | |
expected_result = np.array([0.0, 1.0, 3.0]) | |
result = calculate_path_length_partials(point_list, voxel_size=voxel_size) | |
np.testing.assert_allclose(result, expected_result, atol=1e-5) | |
def test_calculate_path_length_partials_single_point(): | |
point_list = [(0, 0, 0)] | |
expected_result = np.array([0.0]) | |
result = calculate_path_length_partials(point_list) | |
np.testing.assert_allclose(result, expected_result, atol=1e-5) | |
def test_get_paths_from_traces_file(): | |
# Mock the XML traces file content | |
xml_content = '''<?xml version="1.0"?> | |
<root> | |
<path reallength="5.0"> | |
<point x="1" y="2" z="3"/> | |
<point x="4" y="5" z="6"/> | |
</path> | |
<path reallength="10.0"> | |
<point x="7" y="8" z="9"/> | |
<point x="10" y="11" z="12"/> | |
</path> | |
</root> | |
''' | |
# Create a temporary XML file | |
with open("temp_traces.xml", "w") as f: | |
f.write(xml_content) | |
all_paths, path_lengths = get_paths_from_traces_file("temp_traces.xml") | |
expected_paths = [[(1, 2, 3), (4, 5, 6)], [(7, 8, 9), (10, 11, 12)]] | |
expected_lengths = [5.0, 10.0] | |
assert all_paths == expected_paths, f"Expected paths {expected_paths}, but got {all_paths}" | |
assert path_lengths == expected_lengths, f"Expected lengths {expected_lengths}, but got {path_lengths}" | |
# Clean up temporary file | |
import os | |
os.remove("temp_traces.xml") | |
def test_measure_chrom2(): | |
# Mock data | |
path = [(2, 3, 4), (4, 5, 6), (9, 9, 9)] # Sample ordered path points | |
intensity = np.random.rand(10, 10, 10) # Random 3D fluorescence data | |
config = { | |
'z_res': 1, | |
'xy_res': 0.5, | |
'sphere_radius': 2.5 | |
} | |
# Function call | |
_, measurements, measurements_max = measure_chrom2(path, intensity, config) | |
# Assertions | |
assert len(measurements) == len(path), "Measurements length should match path length" | |
assert len(measurements_max) == len(path), "Max measurements length should match path length" | |
assert all(0 <= val <= 1 for val in measurements), "All mean measurements should be between 0 and 1 for this mock data" | |
assert all(0 <= val <= 1 for val in measurements_max), "All max measurements should be between 0 and 1 for this mock data" | |
def test_measure_chrom2_z(): | |
# Mock data | |
path = [(2, 3, 4), (4, 5, 6)] # Sample ordered path points | |
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent | |
config = { | |
'z_res': 1, | |
'xy_res': 0.5, | |
'sphere_radius': 2.5 | |
} | |
# Function call | |
_, measurements, measurements_max = measure_chrom2(path, intensity, config) | |
# Assertions | |
assert len(measurements) == len(path), "Measurements length should match path length" | |
assert len(measurements_max) == len(path), "Max measurements length should match path length" | |
assert all(measurements == np.array([4,6])) | |
assert all(measurements_max == np.array([6,8])) | |
def test_measure_chrom2_z2(): | |
# Mock data | |
path = [(0,0,0), (2, 3, 4), (4, 5, 6)] # Sample ordered path points | |
_,_,intensity = np.meshgrid(np.arange(10), np.arange(10), np.arange(10)) # 3D fluorescence data - z dependent | |
config = { | |
'z_res': 0.25, | |
'xy_res': 0.5, | |
'sphere_radius': 2.5 | |
} | |
# Function call | |
_, measurements, measurements_max = measure_chrom2(path, intensity, config) | |
# Assertions | |
assert len(measurements) == len(path), "Measurements length should match path length" | |
assert len(measurements_max) == len(path), "Max measurements length should match path length" | |
assert all(measurements_max == np.array([9,9,9])) | |
def test_measure_from_mask(): | |
mask = np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[0, 1, 0] | |
]) | |
measure_stack = np.array([ | |
[2, 4, 2], | |
[4, 8, 4], | |
[2, 4, 2] | |
]) | |
result = measure_from_mask(mask, measure_stack) | |
assert result == 24 # Expected sum: 4+4+8+4+4 | |
def test_max_from_mask(): | |
mask = np.array([ | |
[0, 1, 0], | |
[1, 1, 1], | |
[0, 1, 0] | |
]) | |
measure_stack = np.array([ | |
[2, 5, 2], | |
[4, 8, 3], | |
[2, 7, 2] | |
]) | |
result = max_from_mask(mask, measure_stack) | |
assert result == 8 # Expected max: 8 | |
def test_measure_at_point_mean(): | |
measure_stack = np.array([ | |
[[2, 2, 2, 0], [4, 4, 6, 0], [3, 3, 2, 0], [0, 0, 0, 0]], | |
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], | |
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], | |
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], | |
]) | |
p = (1, 1, 1) | |
melem = np.ones((3, 3, 3)) | |
result = measure_at_point(p, melem, measure_stack, op='mean') | |
assert result == 4, "Expected mean: 4" | |
def test_measure_at_point_mean_off1(): | |
measure_stack = np.array([ | |
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], | |
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], | |
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], | |
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], | |
]) | |
p = (0, 0, 0) | |
melem = np.ones((3, 3, 3)) | |
result = measure_at_point(p, melem, measure_stack, op='mean') | |
assert result == 4.5, "Expected mean: 4.5" | |
def test_measure_at_point_mean_off2(): | |
measure_stack = np.array([ | |
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], | |
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], | |
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], | |
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], | |
]) | |
p = (3, 1, 1) | |
melem = np.ones((3, 3, 3)) | |
print(measure_stack[p[0], p[1], p[2]]) | |
result = measure_at_point(p, melem, measure_stack, op='mean') | |
assert result == 32/18 # Expected mean: 4.5 | |
def test_measure_at_point_mean_off3(): | |
measure_stack = np.array([ | |
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], | |
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], | |
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], | |
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], | |
]) | |
p = (3, 1, 1) | |
melem = np.ones((1, 1, 3)) | |
print(measure_stack[p[0], p[1], p[2]]) | |
result = measure_at_point(p, melem, measure_stack, op='mean') | |
assert result == 0, "Expected mean: 4.5" | |
def test_measure_at_point_mean_off3(): | |
measure_stack = np.array([ | |
[[2, 2, 2, 0], [4, 4, 6, 0], [5, 5, 2, 0], [0, 0, 0, 0]], | |
[[4, 4, 4, 0], [8, 8, 8, 0], [4, 4, 4, 0], [0, 0, 0, 0]], | |
[[3, 3, 3, 0], [6, 6, 4, 0], [3, 2, 2, 0], [0, 0, 0, 0]], | |
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], | |
]) | |
p = (3, 1, 1) | |
melem = np.ones((3, 1, 1)) | |
print(measure_stack[p[0], p[1], p[2]]) | |
result = measure_at_point(p, melem, measure_stack, op='mean') | |
assert result == 3, "Expected mean: 4.5" | |
def test_measure_at_point_max(): | |
measure_stack = np.array([ | |
[[2, 2, 2], [4, 4, 4], [2, 2, 2]], | |
[[4, 5, 4], [8, 7, 9], [4, 4, 4]], | |
[[2, 2, 2], [4, 4, 4], [2, 2, 2]] | |
]) | |
p = (1, 1, 1) | |
melem = np.ones((3, 3, 3)) | |
result = measure_at_point(p, melem, measure_stack, op='max') | |
assert result == 9, "Expected max: 9" | |
def test_make_sphere_equal(): | |
R = 5 | |
z_scale_ratio = 1.0 | |
sphere = make_sphere(R, z_scale_ratio) | |
# Check the returned type | |
assert isinstance(sphere, np.ndarray), "Output should be a numpy ndarray" | |
# Check the shape | |
expected_shape = (2*R+1, 2*R+1, 2*R+1) | |
assert sphere.shape == expected_shape, f"Expected shape {expected_shape}, but got {sphere.shape}" | |
assert (sphere[:,:,::-1] == sphere).all(), f"Expected symmetrical mask" | |
assert (sphere[:,::-1,:] == sphere).all(), f"Expected symmetrical mask" | |
assert (sphere[::-1,:,:] == sphere).all(), f"Expected symmetrical mask" | |
assert abs(np.sum(sphere)-4/3*pi*R**3)<10, f"Expected approximate volume to be correct" | |
assert (sphere[R,R,0] == 1), f"Expected centre point on top plane to be within sphere" | |
assert (sphere[R+1,R,0] == 0), f"Expected point next to centre on top plane to be outside sphere" | |
import pandas as pd | |
def test_extract_peaks_basic(): | |
cell_id = 1 # Simple per-cell tag | |
all_paths = [[[0, 0, 0], [1, 1, 0]]] # Single, simple path | |
path_lengths = [1.41] # length of the above path | |
measured_traces = [[100, 200]] # fluorescence along the path | |
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 } | |
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) | |
assert len(df) == 1, "Expected one row in DataFrame" | |
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" | |
assert list(df['Trace_foci_number']) == [1], "Wrong foci number" | |
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) | |
assert foci_pos_index == [[1]] | |
assert foci_absolute_intensity == [[200]] | |
assert screened_foci_data == [[]] | |
assert trace_thresholds == [ [ 150+0.4*50] ] | |
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) | |
def test_extract_peaks_multiple_paths(): | |
cell_id = 1 | |
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]] | |
path_lengths = [1.41, 1.41] | |
measured_traces = [[100, 200], [100, 140]] | |
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 } | |
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) | |
assert len(df) == 2, "Expected two rows in DataFrame" | |
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" | |
assert list(df['Trace_foci_number']) == [1,1], "Wrong foci number" | |
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) | |
print(foci_pos_index) | |
assert list(map(list, foci_pos_index)) == [[1],[1]] | |
assert list(map(list, foci_absolute_intensity)) == [[200],[140]] | |
assert trace_thresholds == [ 150+0.4*50, 120+0.4*20 ] | |
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) | |
assert screened_foci_data == [[],[]] | |
def test_extract_peaks_multiple_paths_screened(): | |
cell_id = 1 | |
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 2], [2, 2, 2]]] | |
path_lengths = [1.41, 1.41] | |
measured_traces = [[100, 200], [100, 150]] | |
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-trace', 'use_corrected_positions': True, 'screening_distance':10 } | |
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) | |
assert len(df) == 2, "Expected two rows in DataFrame" | |
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" | |
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number" | |
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) | |
print(foci_pos_index) | |
assert list(map(list, foci_pos_index)) == [[1],[]] | |
assert list(map(list, foci_absolute_intensity)) == [[200],[]] | |
assert trace_thresholds == [ 150+0.4*50, None ] | |
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) | |
assert screened_foci_data == [[],[RemovedPeakData(idx=1, screening_peak=(0,1))]] | |
def test_extract_peaks_multiple_paths_per_cell(): | |
cell_id = 1 | |
all_paths = [[[0, 0, 0], [1, 1, 0]], [[1, 1, 200], [2, 2, 200]]] | |
path_lengths = [1.41, 1.41] | |
measured_traces = [[100, 200], [100, 140]] | |
config = {'peak_threshold': 0.4, 'sphere_radius': 2, 'xy_res': 1, 'z_res': 1, 'threshold_type':'per-cell', 'use_corrected_positions': True, 'screening_distance':10 } | |
df, foci_absolute_intensity, foci_pos_index, screened_foci_data, trace_thresholds, trace_positions = extract_peaks(cell_id, all_paths, path_lengths, measured_traces, config) | |
assert len(df) == 2, "Expected two rows in DataFrame" | |
assert df['Cell_ID'].iloc[0] == cell_id, "Unexpected cell_id" | |
assert list(df['Trace_foci_number']) == [1,0], "Wrong foci number" | |
assert df['Foci_1_position(um)'].iloc[0] == np.sqrt(2) | |
assert list(map(list, foci_pos_index)) == [[1],[]] | |
assert list(map(list, foci_absolute_intensity)) == [[200],[]] | |
assert trace_thresholds == [ 150+0.4*50, 120+0.4*50 ] | |
assert np.all(trace_positions[0] == np.array([0, np.sqrt(2)])) | |
assert screened_foci_data == [[],[]] | |