test_path_analysis / tests /test_preprocess.py
JFoz's picture
Show screening, permit screening distance to be changed
6756e43
raw
history blame
6.85 kB
from path_analysis.data_preprocess import *
import numpy as np
import pytest
def test_thin_points():
# Define a sample point list
points = [
PeakData([0, 0, 0], 10, 0),
PeakData([1, 1, 1], 8, 1),
PeakData([10, 10, 10], 12, 2),
PeakData([10.5, 10.5, 10.5], 5, 3),
PeakData([20, 20, 20], 15, 4)
]
# Call the thin_points function with dmin=5 (for example)
removed_indices = thin_peaks(points, dmin=5)
# Check results
# Point at index 1 ([1, 1, 1]) should be removed since it's within 5 units distance of point at index 0 and has lower intensity.
# Similarly, point at index 3 ([10.5, 10.5, 10.5]) should be removed as it's close to point at index 2 and has lower intensity.
assert set(removed_indices) == {1, 3}
# Another simple test to check if function does nothing when points are far apart
far_points = [
PeakData([0, 0, 0], 10, 0),
PeakData([100, 100, 100], 12, 1),
PeakData([200, 200, 200], 15, 2)
]
removed_indices_far = thin_peaks(far_points, dmin=5)
assert len(removed_indices_far) == 0 # Expect no points to be removed
def test_find_peaks2():
# Basic test
data = np.array([0, 0, 0, 0, 0, 0, 5, 0, 3, 0])
peaks, _ = find_peaks2(data)
assert set(peaks) == {6} # Expected peaks at positions 6
# Basic test
data = np.array([0, 2, 0, 0, 0, 0, 0, 0, 0, 0])
peaks, _ = find_peaks2(data)
assert set(peaks) == {1} # Expected peaks at positions 1
# Test with padding impacting peak detection
data = np.array([3, 2.9, 0, 0, 0, 3])
peaks, _ = find_peaks2(data)
assert set(peaks) == {0,5} # Peaks at both ends
# Test with close peaks
data = np.array([3, 0, 3])
peaks, _ = find_peaks2(data)
assert set(peaks) == {2} # Peak at right end only
# Test with close peaks
# Test with close peaks
data = np.array([3, 0, 3])
peaks, _ = find_peaks2(data, distance=1)
assert set(peaks) == {0,2} # Peaks at both ends
# Test with close peaks
data = np.array([0, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3])
peaks, _ = find_peaks2(data, distance=1)
assert set(peaks) == {2,7} # Peak at centre (rounded to the left) of groups of maximum values
# Test with prominence threshold
data = np.array([0, 1, 0, 0.4, 0])
peaks, _ = find_peaks2(data, prominence=0.5)
assert peaks == [1] # Only the peak at position 1 meets the prominence threshold
def test_focus_criterion():
pos = np.array([0, 1, 2, 3, 4, 6])
values = np.array([0.1, 0.5, 0.2, 0.8, 0.3, 0.9])
# Basic test
assert np.array_equal(focus_criterion(pos, values), np.array([1, 3, 6])) # only values 0.8 and 0.9 exceed 0.4 times the max (which is 0.9)
# Empty test
assert np.array_equal(focus_criterion(np.array([]), np.array([])), np.array([]))
# Test with custom alpha
assert np.array_equal(focus_criterion(pos, values, alpha=0.5), np.array([1, 3, 6]))
# Test with a larger alpha
assert np.array_equal(focus_criterion(pos, values, alpha=1.0), [6]) # No values exceed the maximum value itself
# Test with all values below threshold
values = np.array([0.1, 0.2, 0.3, 0.4])
assert np.array_equal(focus_criterion(pos[:4], values), [1,2,3]) # All values are below 0.4 times the max (which is 0.4)
@pytest.fixture
def mock_data():
all_paths = [ [ (0,0,0), (0,2,0), (0,5,0), (0,10,0), (0,15,0), (0,20,0)], [ (1,20,0), (1,20,10), (1,20,20) ] ] # Mock paths
path_lengths = [ 2.2, 2.3 ] # Mock path lengths
measured_trace_fluorescence = [ [100, 8, 3, 2, 3, 49], [38, 2, 20] ] # Mock fluorescence data
return all_paths, path_lengths, measured_trace_fluorescence
def test_process_cell_traces_return_type(mock_data):
all_paths, path_lengths, measured_trace_fluorescence = mock_data
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
assert isinstance(result, CellData), f"Expected CellData but got {type(result)}"
def test_process_cell_traces_pathdata_list_length(mock_data):
all_paths, path_lengths, measured_trace_fluorescence = mock_data
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
assert len(result.pathdata_list) == len(all_paths), f"Expected {len(all_paths)} but got {len(result.pathdata_list)}"
def test_process_cell_traces_pathdata_path_lengths(mock_data):
all_paths, path_lengths, measured_trace_fluorescence = mock_data
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
path_lengths = [p.SC_length for p in result.pathdata_list]
expected_path_lengths = [2.2, 2.3]
assert path_lengths == expected_path_lengths, f"Expected {expected_path_lengths} but got {path_lengths}"
def test_process_cell_traces_peaks(mock_data):
all_paths, path_lengths, measured_trace_fluorescence = mock_data
result = process_cell_traces(all_paths, path_lengths, measured_trace_fluorescence)
print(result)
peaks = [p.peaks for p in result.pathdata_list]
assert peaks == [[0,5],[]]
# Mock data
@pytest.fixture
def mock_celldata():
pathdata1 = PathData(peaks=[0, 5], points=[(0,0,0), (0,2,0), (0,5,0), (0,10,0), (0,15,0), (0,20,0)], removed_peaks=[], o_intensity=[100, 8, 3, 2, 3, 69], SC_length=2.2)
pathdata2 = PathData(peaks=[2], points=[(1,20,0), (1,20,10), (1,20,20) ], removed_peaks=[RemovedPeakData(0, (0,5))], o_intensity=[38, 2, 20], SC_length=2.3)
return CellData(pathdata_list=[pathdata1, pathdata2])
def test_analyse_celldata(mock_celldata):
data_frame, foci_absolute_intensity, foci_position_index, dominated_foci_data, trace_median_intensity, trace_thresholds = analyse_celldata(mock_celldata, {'peak_threshold': 0.4, 'threshold_type':'per-trace'})
assert len(data_frame) == len(mock_celldata.pathdata_list), "Mismatch in dataframe length"
assert len(foci_absolute_intensity) == len(mock_celldata.pathdata_list), "Mismatch in relative intensities length"
assert len(foci_position_index) == len(mock_celldata.pathdata_list), "Mismatch in positions length"
assert list(map(list, foci_position_index)) == [[0, 5], [2]]
def test_analyse_celldata_per_cell(mock_celldata):
data_frame, foci_absolute_intensity, foci_position_index, dominated_foci_data, trace_median_intensity, trace_thresholds = analyse_celldata(mock_celldata, {'peak_threshold': 0.4, 'threshold_type':'per-cell'})
assert len(data_frame) == len(mock_celldata.pathdata_list), "Mismatch in relative intensities length"
assert len(foci_absolute_intensity) == len(mock_celldata.pathdata_list), "Mismatch in positions length"
assert len(foci_position_index) == len(mock_celldata.pathdata_list), "Mismatch in position indices length"
assert list(map(list, foci_position_index)) == [[0, 5], []]