File size: 55,036 Bytes
62c110b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
from collections import defaultdict
from contextlib import nullcontext
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Optional, Union

import safetensors
import torch
import torch.nn.functional as F
from huggingface_hub.utils import validate_hf_hub_args
from torch import nn

from ..models.embeddings import (
    ImageProjection,
    IPAdapterFaceIDImageProjection,
    IPAdapterFaceIDPlusImageProjection,
    IPAdapterFullImageProjection,
    IPAdapterPlusImageProjection,
    MultiIPAdapterImageProjection,
)
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta, load_state_dict
from ..utils import (
    USE_PEFT_BACKEND,
    _get_model_file,
    delete_adapter_layers,
    is_accelerate_available,
    is_torch_version,
    logging,
    set_adapter_layers,
    set_weights_and_activate_adapters,
)
from .single_file_utils import (
    convert_stable_cascade_unet_single_file_to_diffusers,
    infer_stable_cascade_single_file_config,
    load_single_file_model_checkpoint,
)
from .unet_loader_utils import _maybe_expand_lora_scales
from .utils import AttnProcsLayers


if is_accelerate_available():
    from accelerate import init_empty_weights
    from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module

logger = logging.get_logger(__name__)


TEXT_ENCODER_NAME = "text_encoder"
UNET_NAME = "unet"

LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"

CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"


class UNet2DConditionLoadersMixin:
    """
    Load LoRA layers into a [`UNet2DCondtionModel`].
    """

    text_encoder_name = TEXT_ENCODER_NAME
    unet_name = UNET_NAME

    @validate_hf_hub_args
    def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
        r"""
        Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
        defined in
        [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
        and be a `torch.nn.Module` class.

        Parameters:
            pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
                Can be either:

                    - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
                      the Hub.
                    - A path to a directory (for example `./my_model_directory`) containing the model weights saved
                      with [`ModelMixin.save_pretrained`].
                    - A [torch state
                      dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
                of Diffusers.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            subfolder (`str`, *optional*, defaults to `""`):
                The subfolder location of a model file within a larger model repository on the Hub or locally.
            mirror (`str`, *optional*):
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.unet.load_attn_procs(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        ```
        """
        from ..models.attention_processor import CustomDiffusionAttnProcessor
        from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer

        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", None)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        weight_name = kwargs.pop("weight_name", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
        # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
        # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
        network_alphas = kwargs.pop("network_alphas", None)

        _pipeline = kwargs.pop("_pipeline", None)

        is_network_alphas_none = network_alphas is None

        allow_pickle = False

        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        user_agent = {
            "file_type": "attn_procs_weights",
            "framework": "pytorch",
        }

        model_file = None
        if not isinstance(pretrained_model_name_or_path_or_dict, dict):
            # Let's first try to load .safetensors weights
            if (use_safetensors and weight_name is None) or (
                weight_name is not None and weight_name.endswith(".safetensors")
            ):
                try:
                    model_file = _get_model_file(
                        pretrained_model_name_or_path_or_dict,
                        weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
                        cache_dir=cache_dir,
                        force_download=force_download,
                        resume_download=resume_download,
                        proxies=proxies,
                        local_files_only=local_files_only,
                        token=token,
                        revision=revision,
                        subfolder=subfolder,
                        user_agent=user_agent,
                    )
                    state_dict = safetensors.torch.load_file(model_file, device="cpu")
                except IOError as e:
                    if not allow_pickle:
                        raise e
                    # try loading non-safetensors weights
                    pass
            if model_file is None:
                model_file = _get_model_file(
                    pretrained_model_name_or_path_or_dict,
                    weights_name=weight_name or LORA_WEIGHT_NAME,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    resume_download=resume_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                )
                state_dict = load_state_dict(model_file)
        else:
            state_dict = pretrained_model_name_or_path_or_dict

        # fill attn processors
        lora_layers_list = []

        is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
        is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())

        if is_lora:
            # correct keys
            state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)

            if network_alphas is not None:
                network_alphas_keys = list(network_alphas.keys())
                used_network_alphas_keys = set()

            lora_grouped_dict = defaultdict(dict)
            mapped_network_alphas = {}

            all_keys = list(state_dict.keys())
            for key in all_keys:
                value = state_dict.pop(key)
                attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                lora_grouped_dict[attn_processor_key][sub_key] = value

                # Create another `mapped_network_alphas` dictionary so that we can properly map them.
                if network_alphas is not None:
                    for k in network_alphas_keys:
                        if k.replace(".alpha", "") in key:
                            mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
                            used_network_alphas_keys.add(k)

            if not is_network_alphas_none:
                if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
                    raise ValueError(
                        f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
                    )

            if len(state_dict) > 0:
                raise ValueError(
                    f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
                )

            for key, value_dict in lora_grouped_dict.items():
                attn_processor = self
                for sub_key in key.split("."):
                    attn_processor = getattr(attn_processor, sub_key)

                # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
                # or add_{k,v,q,out_proj}_proj_lora layers.
                rank = value_dict["lora.down.weight"].shape[0]

                if isinstance(attn_processor, LoRACompatibleConv):
                    in_features = attn_processor.in_channels
                    out_features = attn_processor.out_channels
                    kernel_size = attn_processor.kernel_size

                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRAConv2dLayer(
                            in_features=in_features,
                            out_features=out_features,
                            rank=rank,
                            kernel_size=kernel_size,
                            stride=attn_processor.stride,
                            padding=attn_processor.padding,
                            network_alpha=mapped_network_alphas.get(key),
                        )
                elif isinstance(attn_processor, LoRACompatibleLinear):
                    ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
                    with ctx():
                        lora = LoRALinearLayer(
                            attn_processor.in_features,
                            attn_processor.out_features,
                            rank,
                            mapped_network_alphas.get(key),
                        )
                else:
                    raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")

                value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
                lora_layers_list.append((attn_processor, lora))

                if low_cpu_mem_usage:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
                else:
                    lora.load_state_dict(value_dict)

        elif is_custom_diffusion:
            attn_processors = {}
            custom_diffusion_grouped_dict = defaultdict(dict)
            for key, value in state_dict.items():
                if len(value) == 0:
                    custom_diffusion_grouped_dict[key] = {}
                else:
                    if "to_out" in key:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
                    else:
                        attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
                    custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value

            for key, value_dict in custom_diffusion_grouped_dict.items():
                if len(value_dict) == 0:
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
                    )
                else:
                    cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
                    hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
                    train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
                    attn_processors[key] = CustomDiffusionAttnProcessor(
                        train_kv=True,
                        train_q_out=train_q_out,
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                    )
                    attn_processors[key].load_state_dict(value_dict)
        elif USE_PEFT_BACKEND:
            # In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
            # on the Unet
            pass
        else:
            raise ValueError(
                f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
            )

        # <Unsafe code
        # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
        # Now we remove any existing hooks to
        is_model_cpu_offload = False
        is_sequential_cpu_offload = False

        # For PEFT backend the Unet is already offloaded at this stage as it is handled inside `load_lora_weights_into_unet`
        if not USE_PEFT_BACKEND:
            if _pipeline is not None:
                for _, component in _pipeline.components.items():
                    if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
                        is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
                        is_sequential_cpu_offload = (
                            isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
                            or hasattr(component._hf_hook, "hooks")
                            and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
                        )

                        logger.info(
                            "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
                        )
                        remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

            # only custom diffusion needs to set attn processors
            if is_custom_diffusion:
                self.set_attn_processor(attn_processors)

            # set lora layers
            for target_module, lora_layer in lora_layers_list:
                target_module.set_lora_layer(lora_layer)

            self.to(dtype=self.dtype, device=self.device)

            # Offload back.
            if is_model_cpu_offload:
                _pipeline.enable_model_cpu_offload()
            elif is_sequential_cpu_offload:
                _pipeline.enable_sequential_cpu_offload()
            # Unsafe code />

    def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
        is_new_lora_format = all(
            key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
        )
        if is_new_lora_format:
            # Strip the `"unet"` prefix.
            is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
            if is_text_encoder_present:
                warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
                logger.warning(warn_message)
            unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
            state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}

        # change processor format to 'pure' LoRACompatibleLinear format
        if any("processor" in k.split(".") for k in state_dict.keys()):

            def format_to_lora_compatible(key):
                if "processor" not in key.split("."):
                    return key
                return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")

            state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}

            if network_alphas is not None:
                network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
        return state_dict, network_alphas

    def save_attn_procs(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        weight_name: str = None,
        save_function: Callable = None,
        safe_serialization: bool = True,
        **kwargs,
    ):
        r"""
        Save attention processor layers to a directory so that it can be reloaded with the
        [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to save an attention processor to (will be created if it doesn't exist).
            is_main_process (`bool`, *optional*, defaults to `True`):
                Whether the process calling this is the main process or not. Useful during distributed training and you
                need to call this function on all processes. In this case, set `is_main_process=True` only on the main
                process to avoid race conditions.
            save_function (`Callable`):
                The function to use to save the state dictionary. Useful during distributed training when you need to
                replace `torch.save` with another method. Can be configured with the environment variable
                `DIFFUSERS_SAVE_MODE`.
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether to save the model using `safetensors` or with `pickle`.

        Example:

        ```py
        import torch
        from diffusers import DiffusionPipeline

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            torch_dtype=torch.float16,
        ).to("cuda")
        pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
        ```
        """
        from ..models.attention_processor import (
            CustomDiffusionAttnProcessor,
            CustomDiffusionAttnProcessor2_0,
            CustomDiffusionXFormersAttnProcessor,
        )

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return

        if save_function is None:
            if safe_serialization:

                def save_function(weights, filename):
                    return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})

            else:
                save_function = torch.save

        os.makedirs(save_directory, exist_ok=True)

        is_custom_diffusion = any(
            isinstance(
                x,
                (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
            )
            for (_, x) in self.attn_processors.items()
        )
        if is_custom_diffusion:
            model_to_save = AttnProcsLayers(
                {
                    y: x
                    for (y, x) in self.attn_processors.items()
                    if isinstance(
                        x,
                        (
                            CustomDiffusionAttnProcessor,
                            CustomDiffusionAttnProcessor2_0,
                            CustomDiffusionXFormersAttnProcessor,
                        ),
                    )
                }
            )
            state_dict = model_to_save.state_dict()
            for name, attn in self.attn_processors.items():
                if len(attn.state_dict()) == 0:
                    state_dict[name] = {}
        else:
            model_to_save = AttnProcsLayers(self.attn_processors)
            state_dict = model_to_save.state_dict()

        if weight_name is None:
            if safe_serialization:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
            else:
                weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME

        # Save the model
        save_path = Path(save_directory, weight_name).as_posix()
        save_function(state_dict, save_path)
        logger.info(f"Model weights saved in {save_path}")

    def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
        self.lora_scale = lora_scale
        self._safe_fusing = safe_fusing
        self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))

    def _fuse_lora_apply(self, module, adapter_names=None):
        if not USE_PEFT_BACKEND:
            if hasattr(module, "_fuse_lora"):
                module._fuse_lora(self.lora_scale, self._safe_fusing)

            if adapter_names is not None:
                raise ValueError(
                    "The `adapter_names` argument is not supported in your environment. Please switch"
                    " to PEFT backend to use this argument by installing latest PEFT and transformers."
                    " `pip install -U peft transformers`"
                )
        else:
            from peft.tuners.tuners_utils import BaseTunerLayer

            merge_kwargs = {"safe_merge": self._safe_fusing}

            if isinstance(module, BaseTunerLayer):
                if self.lora_scale != 1.0:
                    module.scale_layer(self.lora_scale)

                # For BC with prevous PEFT versions, we need to check the signature
                # of the `merge` method to see if it supports the `adapter_names` argument.
                supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
                if "adapter_names" in supported_merge_kwargs:
                    merge_kwargs["adapter_names"] = adapter_names
                elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
                    raise ValueError(
                        "The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
                        " to the latest version of PEFT. `pip install -U peft`"
                    )

                module.merge(**merge_kwargs)

    def unfuse_lora(self):
        self.apply(self._unfuse_lora_apply)

    def _unfuse_lora_apply(self, module):
        if not USE_PEFT_BACKEND:
            if hasattr(module, "_unfuse_lora"):
                module._unfuse_lora()
        else:
            from peft.tuners.tuners_utils import BaseTunerLayer

            if isinstance(module, BaseTunerLayer):
                module.unmerge()

    def set_adapters(
        self,
        adapter_names: Union[List[str], str],
        weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None,
    ):
        """
        Set the currently active adapters for use in the UNet.

        Args:
            adapter_names (`List[str]` or `str`):
                The names of the adapters to use.
            adapter_weights (`Union[List[float], float]`, *optional*):
                The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
                adapters.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
        ```
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for `set_adapters()`.")

        adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names

        # Expand weights into a list, one entry per adapter
        # examples for e.g. 2 adapters:  [{...}, 7] -> [7,7] ; None -> [None, None]
        if not isinstance(weights, list):
            weights = [weights] * len(adapter_names)

        if len(adapter_names) != len(weights):
            raise ValueError(
                f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
            )

        # Set None values to default of 1.0
        # e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0]
        weights = [w if w is not None else 1.0 for w in weights]

        # e.g. [{...}, 7] -> [{expanded dict...}, 7]
        weights = _maybe_expand_lora_scales(self, weights)

        set_weights_and_activate_adapters(self, adapter_names, weights)

    def disable_lora(self):
        """
        Disable the UNet's active LoRA layers.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.disable_lora()
        ```
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")
        set_adapter_layers(self, enabled=False)

    def enable_lora(self):
        """
        Enable the UNet's active LoRA layers.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
        )
        pipeline.enable_lora()
        ```
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")
        set_adapter_layers(self, enabled=True)

    def delete_adapters(self, adapter_names: Union[List[str], str]):
        """
        Delete an adapter's LoRA layers from the UNet.

        Args:
            adapter_names (`Union[List[str], str]`):
                The names (single string or list of strings) of the adapter to delete.

        Example:

        ```py
        from diffusers import AutoPipelineForText2Image
        import torch

        pipeline = AutoPipelineForText2Image.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ).to("cuda")
        pipeline.load_lora_weights(
            "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
        )
        pipeline.delete_adapters("cinematic")
        ```
        """
        if not USE_PEFT_BACKEND:
            raise ValueError("PEFT backend is required for this method.")

        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        for adapter_name in adapter_names:
            delete_adapter_layers(self, adapter_name)

            # Pop also the corresponding adapter from the config
            if hasattr(self, "peft_config"):
                self.peft_config.pop(adapter_name, None)

    def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        updated_state_dict = {}
        image_projection = None
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext

        if "proj.weight" in state_dict:
            # IP-Adapter
            num_image_text_embeds = 4
            clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
            cross_attention_dim = state_dict["proj.weight"].shape[0] // 4

            with init_context():
                image_projection = ImageProjection(
                    cross_attention_dim=cross_attention_dim,
                    image_embed_dim=clip_embeddings_dim,
                    num_image_text_embeds=num_image_text_embeds,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj", "image_embeds")
                updated_state_dict[diffusers_name] = value

        elif "proj.3.weight" in state_dict:
            # IP-Adapter Full
            clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
            cross_attention_dim = state_dict["proj.3.weight"].shape[0]

            with init_context():
                image_projection = IPAdapterFullImageProjection(
                    cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj.0", "ff.net.0.proj")
                diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
                diffusers_name = diffusers_name.replace("proj.3", "norm")
                updated_state_dict[diffusers_name] = value

        elif "perceiver_resampler.proj_in.weight" in state_dict:
            # IP-Adapter Face ID Plus
            id_embeddings_dim = state_dict["proj.0.weight"].shape[1]
            embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0]
            hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1]
            output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0]
            heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64

            with init_context():
                image_projection = IPAdapterFaceIDPlusImageProjection(
                    embed_dims=embed_dims,
                    output_dims=output_dims,
                    hidden_dims=hidden_dims,
                    heads=heads,
                    id_embeddings_dim=id_embeddings_dim,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("perceiver_resampler.", "")
                diffusers_name = diffusers_name.replace("0.to", "attn.to")
                diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.")
                diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.")
                diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.")
                diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.")
                diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight")
                diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0")
                diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1")
                diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0")
                diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1")
                diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0")
                diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1")
                diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0")
                diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1")

                if "norm1" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
                elif "norm2" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
                elif "to_kv" in diffusers_name:
                    v_chunk = value.chunk(2, dim=0)
                    updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
                    updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
                elif "to_out" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
                elif "proj.0.weight" == diffusers_name:
                    updated_state_dict["proj.net.0.proj.weight"] = value
                elif "proj.0.bias" == diffusers_name:
                    updated_state_dict["proj.net.0.proj.bias"] = value
                elif "proj.2.weight" == diffusers_name:
                    updated_state_dict["proj.net.2.weight"] = value
                elif "proj.2.bias" == diffusers_name:
                    updated_state_dict["proj.net.2.bias"] = value
                else:
                    updated_state_dict[diffusers_name] = value

        elif "norm.weight" in state_dict:
            # IP-Adapter Face ID
            id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1]
            id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0]
            multiplier = id_embeddings_dim_out // id_embeddings_dim_in
            norm_layer = "norm.weight"
            cross_attention_dim = state_dict[norm_layer].shape[0]
            num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim

            with init_context():
                image_projection = IPAdapterFaceIDImageProjection(
                    cross_attention_dim=cross_attention_dim,
                    image_embed_dim=id_embeddings_dim_in,
                    mult=multiplier,
                    num_tokens=num_tokens,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj.0", "ff.net.0.proj")
                diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
                updated_state_dict[diffusers_name] = value

        else:
            # IP-Adapter Plus
            num_image_text_embeds = state_dict["latents"].shape[1]
            embed_dims = state_dict["proj_in.weight"].shape[1]
            output_dims = state_dict["proj_out.weight"].shape[0]
            hidden_dims = state_dict["latents"].shape[2]
            heads = state_dict["layers.0.0.to_q.weight"].shape[0] // 64

            with init_context():
                image_projection = IPAdapterPlusImageProjection(
                    embed_dims=embed_dims,
                    output_dims=output_dims,
                    hidden_dims=hidden_dims,
                    heads=heads,
                    num_queries=num_image_text_embeds,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("0.to", "2.to")
                diffusers_name = diffusers_name.replace("1.0.weight", "3.0.weight")
                diffusers_name = diffusers_name.replace("1.0.bias", "3.0.bias")
                diffusers_name = diffusers_name.replace("1.1.weight", "3.1.net.0.proj.weight")
                diffusers_name = diffusers_name.replace("1.3.weight", "3.1.net.2.weight")

                if "norm1" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
                elif "norm2" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
                elif "to_kv" in diffusers_name:
                    v_chunk = value.chunk(2, dim=0)
                    updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
                    updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
                elif "to_out" in diffusers_name:
                    updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
                else:
                    updated_state_dict[diffusers_name] = value

        if not low_cpu_mem_usage:
            image_projection.load_state_dict(updated_state_dict)
        else:
            load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)

        return image_projection

    def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
        from ..models.attention_processor import (
            AttnProcessor,
            AttnProcessor2_0,
            IPAdapterAttnProcessor,
            IPAdapterAttnProcessor2_0,
        )

        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        # set ip-adapter cross-attention processors & load state_dict
        attn_procs = {}
        key_id = 1
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
        for name in self.attn_processors.keys():
            cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
            if name.startswith("mid_block"):
                hidden_size = self.config.block_out_channels[-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(self.config.block_out_channels))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = self.config.block_out_channels[block_id]

            if cross_attention_dim is None or "motion_modules" in name:
                attn_processor_class = (
                    AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
                )
                attn_procs[name] = attn_processor_class()

            else:
                attn_processor_class = (
                    IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
                )
                num_image_text_embeds = []
                for state_dict in state_dicts:
                    if "proj.weight" in state_dict["image_proj"]:
                        # IP-Adapter
                        num_image_text_embeds += [4]
                    elif "proj.3.weight" in state_dict["image_proj"]:
                        # IP-Adapter Full Face
                        num_image_text_embeds += [257]  # 256 CLIP tokens + 1 CLS token
                    elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
                        # IP-Adapter Face ID Plus
                        num_image_text_embeds += [4]
                    elif "norm.weight" in state_dict["image_proj"]:
                        # IP-Adapter Face ID
                        num_image_text_embeds += [4]
                    else:
                        # IP-Adapter Plus
                        num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]

                with init_context():
                    attn_procs[name] = attn_processor_class(
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                        scale=1.0,
                        num_tokens=num_image_text_embeds,
                    )

                value_dict = {}
                for i, state_dict in enumerate(state_dicts):
                    value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
                    value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})

                if not low_cpu_mem_usage:
                    attn_procs[name].load_state_dict(value_dict)
                else:
                    device = next(iter(value_dict.values())).device
                    dtype = next(iter(value_dict.values())).dtype
                    load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)

                key_id += 2

        return attn_procs

    def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
        if not isinstance(state_dicts, list):
            state_dicts = [state_dicts]
        # Set encoder_hid_proj after loading ip_adapter weights,
        # because `IPAdapterPlusImageProjection` also has `attn_processors`.
        self.encoder_hid_proj = None

        attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
        self.set_attn_processor(attn_procs)

        # convert IP-Adapter Image Projection layers to diffusers
        image_projection_layers = []
        for state_dict in state_dicts:
            image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
                state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
            )
            image_projection_layers.append(image_projection_layer)

        self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
        self.config.encoder_hid_dim_type = "ip_image_proj"

        self.to(dtype=self.dtype, device=self.device)

    def _load_ip_adapter_loras(self, state_dicts):
        lora_dicts = {}
        for key_id, name in enumerate(self.attn_processors.keys()):
            for i, state_dict in enumerate(state_dicts):
                if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
                    if i not in lora_dicts:
                        lora_dicts[i] = {}
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_k_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_q_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_v_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_out_lora.down.weight"
                            ]
                        }
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
                    )
                    lora_dicts[i].update(
                        {
                            f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
                                f"{key_id}.to_out_lora.up.weight"
                            ]
                        }
                    )
        return lora_dicts


class FromOriginalUNetMixin:
    """
    Load pretrained UNet model weights saved in the `.ckpt` or `.safetensors` format into a [`StableCascadeUNet`].
    """

    @classmethod
    @validate_hf_hub_args
    def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
        r"""
        Instantiate a [`StableCascadeUNet`] from pretrained StableCascadeUNet weights saved in the original `.ckpt` or
        `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.

        Parameters:
            pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:
                    - A link to the `.ckpt` file (for example
                      `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
                    - A path to a *file* containing all pipeline weights.
            config: (`dict`, *optional*):
                Dictionary containing the configuration of the model:
            torch_dtype (`str` or `torch.dtype`, *optional*):
                Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
                dtype is automatically derived from the model's weights.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
            resume_download:
                Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
                of Diffusers.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to True, the model
                won't be downloaded from the Hub.
            token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load and saveable variables of the model.

        """
        class_name = cls.__name__
        if class_name != "StableCascadeUNet":
            raise ValueError("FromOriginalUNetMixin is currently only compatible with StableCascadeUNet")

        config = kwargs.pop("config", None)
        resume_download = kwargs.pop("resume_download", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        token = kwargs.pop("token", None)
        cache_dir = kwargs.pop("cache_dir", None)
        local_files_only = kwargs.pop("local_files_only", None)
        revision = kwargs.pop("revision", None)
        torch_dtype = kwargs.pop("torch_dtype", None)

        checkpoint = load_single_file_model_checkpoint(
            pretrained_model_link_or_path,
            resume_download=resume_download,
            force_download=force_download,
            proxies=proxies,
            token=token,
            cache_dir=cache_dir,
            local_files_only=local_files_only,
            revision=revision,
        )

        if config is None:
            config = infer_stable_cascade_single_file_config(checkpoint)
            model_config = cls.load_config(**config, **kwargs)
        else:
            model_config = config

        ctx = init_empty_weights if is_accelerate_available() else nullcontext
        with ctx():
            model = cls.from_config(model_config, **kwargs)

        diffusers_format_checkpoint = convert_stable_cascade_unet_single_file_to_diffusers(checkpoint)
        if is_accelerate_available():
            unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype)
            if len(unexpected_keys) > 0:
                logger.warning(
                    f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
                )

        else:
            model.load_state_dict(diffusers_format_checkpoint)

        if torch_dtype is not None:
            model.to(torch_dtype)

        return model