Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm | |
import math | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils.torch_utils import randn_tensor | |
from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
Implements DPMSolverMultistepScheduler in EDM formulation as presented in Karras et al. 2022 [1]. | |
`EDMDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. | |
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." | |
https://arxiv.org/abs/2206.00364 | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
sigma_min (`float`, *optional*, defaults to 0.002): | |
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable | |
range is [0, 10]. | |
sigma_max (`float`, *optional*, defaults to 80.0): | |
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable | |
range is [0.2, 80.0]. | |
sigma_data (`float`, *optional*, defaults to 0.5): | |
The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. | |
sigma_schedule (`str`, *optional*, defaults to `karras`): | |
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper | |
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was | |
incorporated in this model: https://huggingface.co/stabilityai/cosxl. | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
solver_order (`int`, defaults to 2): | |
The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided | |
sampling, and `solver_order=3` for unconditional sampling. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
thresholding (`bool`, defaults to `False`): | |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | |
as Stable Diffusion. | |
dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
sample_max_value (`float`, defaults to 1.0): | |
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and | |
`algorithm_type="dpmsolver++"`. | |
algorithm_type (`str`, defaults to `dpmsolver++`): | |
Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements | |
the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to | |
use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. | |
solver_type (`str`, defaults to `midpoint`): | |
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the | |
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. | |
lower_order_final (`bool`, defaults to `True`): | |
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can | |
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. | |
euler_at_final (`bool`, defaults to `False`): | |
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail | |
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference | |
steps, but sometimes may result in blurring. | |
final_sigmas_type (`str`, defaults to `"zero"`): | |
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final | |
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. | |
""" | |
_compatibles = [] | |
order = 1 | |
def __init__( | |
self, | |
sigma_min: float = 0.002, | |
sigma_max: float = 80.0, | |
sigma_data: float = 0.5, | |
sigma_schedule: str = "karras", | |
num_train_timesteps: int = 1000, | |
prediction_type: str = "epsilon", | |
rho: float = 7.0, | |
solver_order: int = 2, | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
sample_max_value: float = 1.0, | |
algorithm_type: str = "dpmsolver++", | |
solver_type: str = "midpoint", | |
lower_order_final: bool = True, | |
euler_at_final: bool = False, | |
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" | |
): | |
# settings for DPM-Solver | |
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"]: | |
if algorithm_type == "deis": | |
self.register_to_config(algorithm_type="dpmsolver++") | |
else: | |
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}") | |
if solver_type not in ["midpoint", "heun"]: | |
if solver_type in ["logrho", "bh1", "bh2"]: | |
self.register_to_config(solver_type="midpoint") | |
else: | |
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") | |
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero": | |
raise ValueError( | |
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead." | |
) | |
ramp = torch.linspace(0, 1, num_train_timesteps) | |
if sigma_schedule == "karras": | |
sigmas = self._compute_karras_sigmas(ramp) | |
elif sigma_schedule == "exponential": | |
sigmas = self._compute_exponential_sigmas(ramp) | |
self.timesteps = self.precondition_noise(sigmas) | |
self.sigmas = self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | |
# setable values | |
self.num_inference_steps = None | |
self.model_outputs = [None] * solver_order | |
self.lower_order_nums = 0 | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
def init_noise_sigma(self): | |
# standard deviation of the initial noise distribution | |
return (self.config.sigma_max**2 + 1) ** 0.5 | |
def step_index(self): | |
""" | |
The index counter for current timestep. It will increase 1 after each scheduler step. | |
""" | |
return self._step_index | |
def begin_index(self): | |
""" | |
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
""" | |
return self._begin_index | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
def set_begin_index(self, begin_index: int = 0): | |
""" | |
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
Args: | |
begin_index (`int`): | |
The begin index for the scheduler. | |
""" | |
self._begin_index = begin_index | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs | |
def precondition_inputs(self, sample, sigma): | |
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) | |
scaled_sample = sample * c_in | |
return scaled_sample | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_noise | |
def precondition_noise(self, sigma): | |
if not isinstance(sigma, torch.Tensor): | |
sigma = torch.tensor([sigma]) | |
c_noise = 0.25 * torch.log(sigma) | |
return c_noise | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs | |
def precondition_outputs(self, sample, model_output, sigma): | |
sigma_data = self.config.sigma_data | |
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) | |
if self.config.prediction_type == "epsilon": | |
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
elif self.config.prediction_type == "v_prediction": | |
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 | |
else: | |
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") | |
denoised = c_skip * sample + c_out * model_output | |
return denoised | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | |
) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | |
Args: | |
sample (`torch.FloatTensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.FloatTensor`: | |
A scaled input sample. | |
""" | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
sigma = self.sigmas[self.step_index] | |
sample = self.precondition_inputs(sample, sigma) | |
self.is_scale_input_called = True | |
return sample | |
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
self.num_inference_steps = num_inference_steps | |
ramp = np.linspace(0, 1, self.num_inference_steps) | |
if self.config.sigma_schedule == "karras": | |
sigmas = self._compute_karras_sigmas(ramp) | |
elif self.config.sigma_schedule == "exponential": | |
sigmas = self._compute_exponential_sigmas(ramp) | |
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) | |
self.timesteps = self.precondition_noise(sigmas) | |
if self.config.final_sigmas_type == "sigma_min": | |
sigma_last = self.config.sigma_min | |
elif self.config.final_sigmas_type == "zero": | |
sigma_last = 0 | |
else: | |
raise ValueError( | |
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" | |
) | |
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) | |
self.model_outputs = [ | |
None, | |
] * self.config.solver_order | |
self.lower_order_nums = 0 | |
# add an index counter for schedulers that allow duplicated timesteps | |
self._step_index = None | |
self._begin_index = None | |
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas | |
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor: | |
"""Constructs the noise schedule of Karras et al. (2022).""" | |
sigma_min = sigma_min or self.config.sigma_min | |
sigma_max = sigma_max or self.config.sigma_max | |
rho = self.config.rho | |
min_inv_rho = sigma_min ** (1 / rho) | |
max_inv_rho = sigma_max ** (1 / rho) | |
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
return sigmas | |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas | |
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.FloatTensor: | |
"""Implementation closely follows k-diffusion. | |
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 | |
""" | |
sigma_min = sigma_min or self.config.sigma_min | |
sigma_max = sigma_max or self.config.sigma_max | |
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) | |
return sigmas | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample | |
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
""" | |
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the | |
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by | |
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing | |
pixels from saturation at each step. We find that dynamic thresholding results in significantly better | |
photorealism as well as better image-text alignment, especially when using very large guidance weights." | |
https://arxiv.org/abs/2205.11487 | |
""" | |
dtype = sample.dtype | |
batch_size, channels, *remaining_dims = sample.shape | |
if dtype not in (torch.float32, torch.float64): | |
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half | |
# Flatten sample for doing quantile calculation along each image | |
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) | |
abs_sample = sample.abs() # "a certain percentile absolute pixel value" | |
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) | |
s = torch.clamp( | |
s, min=1, max=self.config.sample_max_value | |
) # When clamped to min=1, equivalent to standard clipping to [-1, 1] | |
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 | |
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" | |
sample = sample.reshape(batch_size, channels, *remaining_dims) | |
sample = sample.to(dtype) | |
return sample | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t | |
def _sigma_to_t(self, sigma, log_sigmas): | |
# get log sigma | |
log_sigma = np.log(np.maximum(sigma, 1e-10)) | |
# get distribution | |
dists = log_sigma - log_sigmas[:, np.newaxis] | |
# get sigmas range | |
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) | |
high_idx = low_idx + 1 | |
low = log_sigmas[low_idx] | |
high = log_sigmas[high_idx] | |
# interpolate sigmas | |
w = (low - log_sigma) / (low - high) | |
w = np.clip(w, 0, 1) | |
# transform interpolation to time range | |
t = (1 - w) * low_idx + w * high_idx | |
t = t.reshape(sigma.shape) | |
return t | |
def _sigma_to_alpha_sigma_t(self, sigma): | |
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1 | |
sigma_t = sigma | |
return alpha_t, sigma_t | |
def convert_model_output( | |
self, | |
model_output: torch.FloatTensor, | |
sample: torch.FloatTensor = None, | |
) -> torch.FloatTensor: | |
""" | |
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is | |
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an | |
integral of the data prediction model. | |
<Tip> | |
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise | |
prediction and data prediction models. | |
</Tip> | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from the learned diffusion model. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
Returns: | |
`torch.FloatTensor`: | |
The converted model output. | |
""" | |
sigma = self.sigmas[self.step_index] | |
x0_pred = self.precondition_outputs(sample, model_output, sigma) | |
if self.config.thresholding: | |
x0_pred = self._threshold_sample(x0_pred) | |
return x0_pred | |
def dpm_solver_first_order_update( | |
self, | |
model_output: torch.FloatTensor, | |
sample: torch.FloatTensor = None, | |
noise: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
""" | |
One step for the first-order DPMSolver (equivalent to DDIM). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from the learned diffusion model. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
Returns: | |
`torch.FloatTensor`: | |
The sample tensor at the previous timestep. | |
""" | |
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) | |
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | |
h = lambda_t - lambda_s | |
if self.config.algorithm_type == "dpmsolver++": | |
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output | |
elif self.config.algorithm_type == "sde-dpmsolver++": | |
assert noise is not None | |
x_t = ( | |
(sigma_t / sigma_s * torch.exp(-h)) * sample | |
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output | |
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
) | |
return x_t | |
def multistep_dpm_solver_second_order_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
sample: torch.FloatTensor = None, | |
noise: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
""" | |
One step for the second-order multistep DPMSolver. | |
Args: | |
model_output_list (`List[torch.FloatTensor]`): | |
The direct outputs from learned diffusion model at current and latter timesteps. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
Returns: | |
`torch.FloatTensor`: | |
The sample tensor at the previous timestep. | |
""" | |
sigma_t, sigma_s0, sigma_s1 = ( | |
self.sigmas[self.step_index + 1], | |
self.sigmas[self.step_index], | |
self.sigmas[self.step_index - 1], | |
) | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
m0, m1 = model_output_list[-1], model_output_list[-2] | |
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
r0 = h_0 / h | |
D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
if self.config.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2211.01095 for detailed derivations | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
) | |
elif self.config.algorithm_type == "sde-dpmsolver++": | |
assert noise is not None | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 | |
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s0 * torch.exp(-h)) * sample | |
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 | |
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 | |
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise | |
) | |
return x_t | |
def multistep_dpm_solver_third_order_update( | |
self, | |
model_output_list: List[torch.FloatTensor], | |
sample: torch.FloatTensor = None, | |
) -> torch.FloatTensor: | |
""" | |
One step for the third-order multistep DPMSolver. | |
Args: | |
model_output_list (`List[torch.FloatTensor]`): | |
The direct outputs from learned diffusion model at current and latter timesteps. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by diffusion process. | |
Returns: | |
`torch.FloatTensor`: | |
The sample tensor at the previous timestep. | |
""" | |
sigma_t, sigma_s0, sigma_s1, sigma_s2 = ( | |
self.sigmas[self.step_index + 1], | |
self.sigmas[self.step_index], | |
self.sigmas[self.step_index - 1], | |
self.sigmas[self.step_index - 2], | |
) | |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) | |
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) | |
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) | |
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2) | |
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) | |
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) | |
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) | |
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) | |
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | |
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | |
r0, r1 = h_0 / h, h_1 / h | |
D0 = m0 | |
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | |
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
if self.config.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (torch.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 | |
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | |
) | |
return x_t | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep | |
def index_for_timestep(self, timestep, schedule_timesteps=None): | |
if schedule_timesteps is None: | |
schedule_timesteps = self.timesteps | |
index_candidates = (schedule_timesteps == timestep).nonzero() | |
if len(index_candidates) == 0: | |
step_index = len(self.timesteps) - 1 | |
# The sigma index that is taken for the **very** first `step` | |
# is always the second index (or the last index if there is only 1) | |
# This way we can ensure we don't accidentally skip a sigma in | |
# case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
elif len(index_candidates) > 1: | |
step_index = index_candidates[1].item() | |
else: | |
step_index = index_candidates[0].item() | |
return step_index | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index | |
def _init_step_index(self, timestep): | |
""" | |
Initialize the step_index counter for the scheduler. | |
""" | |
if self.begin_index is None: | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
self._step_index = self.index_for_timestep(timestep) | |
else: | |
self._step_index = self._begin_index | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
generator=None, | |
return_dict: bool = True, | |
) -> Union[SchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
the multistep DPMSolver. | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`int`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`): | |
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
# Improve numerical stability for small number of steps | |
lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( | |
self.config.euler_at_final | |
or (self.config.lower_order_final and len(self.timesteps) < 15) | |
or self.config.final_sigmas_type == "zero" | |
) | |
lower_order_second = ( | |
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 | |
) | |
model_output = self.convert_model_output(model_output, sample=sample) | |
for i in range(self.config.solver_order - 1): | |
self.model_outputs[i] = self.model_outputs[i + 1] | |
self.model_outputs[-1] = model_output | |
if self.config.algorithm_type == "sde-dpmsolver++": | |
noise = randn_tensor( | |
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype | |
) | |
else: | |
noise = None | |
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: | |
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) | |
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: | |
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) | |
else: | |
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) | |
if self.lower_order_nums < self.config.solver_order: | |
self.lower_order_nums += 1 | |
# upon completion increase step index by one | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
# Make sure sigmas and timesteps have the same device and dtype as original_samples | |
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
# mps does not support float64 | |
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
else: | |
schedule_timesteps = self.timesteps.to(original_samples.device) | |
timesteps = timesteps.to(original_samples.device) | |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index | |
if self.begin_index is None: | |
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] | |
elif self.step_index is not None: | |
# add_noise is called after first denoising step (for inpainting) | |
step_indices = [self.step_index] * timesteps.shape[0] | |
else: | |
# add noise is called before first denoising step to create initial latent(img2img) | |
step_indices = [self.begin_index] * timesteps.shape[0] | |
sigma = sigmas[step_indices].flatten() | |
while len(sigma.shape) < len(original_samples.shape): | |
sigma = sigma.unsqueeze(-1) | |
noisy_samples = original_samples + noise * sigma | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |