Spaces:
Runtime error
Runtime error
''' | |
import torch | |
import torchaudio | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import speech_recognition as sr | |
import io | |
from pydub import AudioSegment | |
import librosa | |
import whisper | |
from scipy.io import wavfile | |
from test import record_voice | |
model = Wav2Vec2ForCTC.from_pretrained(r'yongjian/wav2vec2-large-a') # Note: PyTorch Model | |
tokenizer = Wav2Vec2Processor.from_pretrained(r'yongjian/wav2vec2-large-a') | |
r = sr.Recognizer() | |
from transformers import pipeline | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
with sr.Microphone(sample_rate=16000) as source: | |
print("You can start speaking now") | |
record_voice() | |
x,_ = librosa.load("output.wav") | |
model_inputs = tokenizer(x, sampling_rate=16000, return_tensors="pt", padding=True) | |
logits = model(model_inputs.input_values, attention_mask=model_inputs.attention_mask).logits.cuda() # use .cuda() for GPU acceleration | |
pred_ids = torch.argmax(logits, dim=-1).cpu() | |
pred_text = tokenizer.batch_decode(pred_ids) | |
print(x[:10],x.shape) | |
print('Transcription:', pred_text) | |
model = whisper.load_model("base") | |
result = model.transcribe("output.wav") | |
print(result["text"]) | |
summary_input = result["text"] | |
summary_output = (summarizer(summary_input, max_length=30, min_length=20, do_sample=False)) | |
print(summary_output) | |
with open("raw_text.txt",'w',encoding = 'utf-8') as f: | |
f.write(summary_input) | |
f.close() | |
with open("summary_text.txt",'w',encoding = 'utf-8') as f: | |
f.write(summary_output[0]["summary_text"]) | |
f.close() | |
''' |