Spaces:
Runtime error
Runtime error
File size: 4,116 Bytes
1a2426f 4888c0f 1a2426f 16c7d1c 1a2426f f7a9654 1a2426f a2d3508 1a2426f a2d3508 1a2426f d497811 1a2426f d497811 1a2426f 4888c0f 1a2426f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
from langchain.vectorstores import Chroma
from PyPDF2 import PdfWriter
import gradio as gr
import os
from dotenv import load_dotenv
import openai
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.environ['my_secret']
llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613", temperature=0)
loader = PyPDFLoader("/home/user/app/docs.pdf")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
#vector embedding
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(texts, embeddings)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
system_template="""Your name is Sayno. You act like a successful rich man.
Never reveal that it is an AI. Use the following pieces of context to answer the users question shortly.
Given the following summaries of a long document and a question, create a final answer with references.
If you don't know the answer, just say that "I don't know", don't try to make up an answer.
----------------
{summaries}
You MUST answer in Korean and in Markdown format:"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQAWithSourcesChain
chain_type_kwargs = {"prompt": prompt}
chain = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs,
reduce_k_below_max_tokens=True,
verbose=True,
)
query = "ν볡ν μΈμμ΄λ?"
result = chain(query)
for doc in result['source_documents']:
print('λ΄μ© : ' + doc.page_content[0:100].replace('\n', ' '))
print('νμΌ : ' + doc.metadata['source'])
print('νμ΄μ§ : ' + str(doc.metadata['page']))
def respond(message, chat_history): # μ±ν
λ΄μ μλ΅μ μ²λ¦¬νλ ν¨μλ₯Ό μ μν©λλ€.
result = chain(message)
bot_message = result['answer']
for i, doc in enumerate(result['source_documents']):
bot_message += '[' + str(i+1) + '] ' + doc.metadata['source'] + '(' + str(doc.metadata['page']) + ') '
chat_history.append((message, bot_message)) # μ±ν
κΈ°λ‘μ μ¬μ©μμ λ©μμ§μ λ΄μ μλ΅μ μΆκ°ν©λλ€.
return "", chat_history # μμ λ μ±ν
κΈ°λ‘μ λ°νν©λλ€.
with gr.Blocks(theme='gstaff/sketch') as demo: # gr.Blocks()λ₯Ό μ¬μ©νμ¬ μΈν°νμ΄μ€λ₯Ό μμ±ν©λλ€.
gr.Markdown("# μλ
νμΈμ. μΈμ΄λ
Έμ λνν΄λ³΄μΈμ. \n λ΅λ³ μμ±μ μ‘°κΈ μκ°μ΄ μμλ μ μμ΅λλ€.")
chatbot = gr.Chatbot(label="μ±ν
μ°½") # 'μ±ν
μ°½'μ΄λΌλ λ μ΄λΈμ κ°μ§ μ±ν
λ΄ μ»΄ν¬λνΈλ₯Ό μμ±ν©λλ€.
msg = gr.Textbox(label="μ
λ ₯") # 'μ
λ ₯'μ΄λΌλ λ μ΄λΈμ κ°μ§ ν
μ€νΈλ°μ€λ₯Ό μμ±ν©λλ€.
clear = gr.Button("μ΄κΈ°ν") # 'μ΄κΈ°ν'λΌλ λ μ΄λΈμ κ°μ§ λ²νΌμ μμ±ν©λλ€.
msg.submit(respond, [msg, chatbot], [msg, chatbot]) # ν
μ€νΈλ°μ€μ λ©μμ§λ₯Ό μ
λ ₯νκ³ μ μΆνλ©΄ respond ν¨μκ° νΈμΆλλλ‘ ν©λλ€.
clear.click(lambda: None, None, chatbot, queue=False) # 'μ΄κΈ°ν' λ²νΌμ ν΄λ¦νλ©΄ μ±ν
κΈ°λ‘μ μ΄κΈ°νν©λλ€.
demo.launch(debug=True) # μΈν°νμ΄μ€λ₯Ό μ€νν©λλ€. μ€ννλ©΄ μ¬μ©μλ 'μ
λ ₯' ν
μ€νΈλ°μ€μ λ©μμ§λ₯Ό μμ±νκ³ μ μΆν μ μμΌλ©°, 'μ΄κΈ°ν' λ²νΌμ ν΅ν΄ μ±ν
κΈ°λ‘μ μ΄κΈ°ν ν μ μμ΅λλ€.
|