from openai import OpenAI import gradio as gr import os import json import functools import random import datetime from transformers import AutoTokenizer reflection_tokenizer = AutoTokenizer.from_pretrained("mattshumer/Reflection-Llama-3.1-70B") api_key = os.environ.get('FEATHERLESS_API_KEY') client = OpenAI( base_url="https://api.featherless.ai/v1", api_key=api_key ) def respond(message, history, model): history_openai_format = [] for human, assistant in history: history_openai_format.append({"role": "user", "content": human }) history_openai_format.append({"role": "assistant", "content":assistant}) history_openai_format.append({"role": "user", "content": message}) if model == "mattshumer/Reflection-Llama-3.1-70B": # chat/completions not working for this model; # apply chat template locally response = client.completions.create( model=model, prompt=reflection_tokenizer.apply_chat_template(history_openai_format, tokenize=False), temperature=1.0, stream=True, max_tokens=2000, extra_headers={ 'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model', 'X-Title': "HF's missing inference widget" } ) # debugger_ran = False partial_message = "" for chunk in response: # if not debugger_ran: # import code # code.InteractiveConsole(locals=locals()).interact() # debugger_ran = True if chunk.choices[0].text is not None: partial_message = partial_message + chunk.choices[0].text prefix_to_strip = "<|start_header_id|>assistant<|end_header_id|>\n\n" yield partial_message[len(prefix_to_strip):] else: response = client.chat.completions.create( model=model, messages= history_openai_format, temperature=1.0, stream=True, max_tokens=2000, extra_headers={ 'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model', 'X-Title': "HF's missing inference widget" } ) partial_message = "" for chunk in response: if chunk.choices[0].delta.content is not None: partial_message = partial_message + chunk.choices[0].delta.content yield partial_message logo = open('./logo.svg').read() with open('./model-cache.json', 'r') as f_model_cache: model_cache = json.load(f_model_cache) model_class_filter = { "mistral-v02-7b-std-lc": True, "llama3-8b-8k": True, "llama2-solar-10b7-4k": True, "mistral-nemo-12b-lc": True, "llama2-13b-4k": True, "llama3-15b-8k": True, "qwen2-32b-lc":False, "llama3-70b-8k":False, "qwen2-72b-lc":False, "mixtral-8x22b-lc":False, "llama3-405b-lc":False, } def build_model_choices(): all_choices = [] for model_class in model_cache: if model_class not in model_class_filter: print(f"Warning: new model class {model_class}. Treating as blacklisted") continue if not model_class_filter[model_class]: continue all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ] # and add one more ... model_class = "llama3-70b-8k" model_id = "mattshumer/Reflection-Llama-3.1-70B" all_choices += [(f"{model_id} ({model_class})", model_id)] return all_choices model_choices = build_model_choices() def initial_model(referer=None): return "mattshumer/Reflection-Llama-3.1-70B" # if referer == 'http://127.0.0.1:7860/': # return 'Sao10K/Venomia-1.1-m7' # if referer and referer.startswith("https://huggingface.co/"): # possible_model = referer[23:] # full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), []) # model_is_supported = possible_model in full_model_list # if model_is_supported: # return possible_model # # let's use a random but different model each day. # key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e') # o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}") # return o.choice(model_choices)[1] title_text="HuggingFace's missing inference widget" css = """ .logo-mark { fill: #ffe184; } /* from https://github.com/gradio-app/gradio/issues/4001 * necessary as putting ChatInterface in gr.Blocks changes behaviour */ .contain { display: flex; flex-direction: column; } .gradio-container { height: 100vh !important; } #component-0 { height: 100%; } #chatbot { flex-grow: 1; overflow: auto;} """ with gr.Blocks(title_text, css=css) as demo: gr.HTML("""
Test any <=15B LLM from the hub.
Inference by {logo}
""") def update_initial_model_choice(request: gr.Request): return initial_model(request.headers.get('referer')) demo.load(update_initial_model_choice, outputs=model_selector) demo.launch()