import os os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" import time import librosa import spaces from librosa.display import specshow import numpy as np from accelerate import Accelerator import matplotlib.pyplot as plt import gradio as gr from typing import Tuple from MPSENet import MPSENet accelerator = Accelerator() device = accelerator.device print(f"Using device: {device}") model = MPSENet.from_pretrained("JacobLinCool/MP-SENet-DNS").to(device) def plot_spec(y: np.ndarray, title: str = "Spectrogram") -> plt.Figure: y[np.isnan(y)] = 0 y[np.isinf(y)] = 0 stft = librosa.stft( y, n_fft=model.h.n_fft, hop_length=model.h.hop_size, win_length=model.h.win_size ) D = librosa.amplitude_to_db(np.abs(stft), ref=np.max) fig = plt.figure(figsize=(10, 4)) specshow( D, sr=model.sampling_rate, n_fft=model.h.n_fft, hop_length=model.h.hop_size, win_length=model.h.win_size, y_axis="linear", x_axis="time", cmap="viridis", ) plt.title(title) plt.tight_layout() return fig def plot_input(input: str) -> plt.Figure: wav, _ = librosa.load(input, sr=model.sampling_rate) return plot_spec(wav, title="Original Spectrogram") def plot_output(output: Tuple[int, np.ndarray]) -> plt.Figure: wav = output[1].astype(np.float32) / 32768.0 return plot_spec(wav, title="Processed Spectrogram") def process_audio( input: str, segment_size_seconds: int, ) -> Tuple[Tuple[int, np.ndarray], np.ndarray, np.ndarray, str]: # Load the audio start_time = time.time() noisy_wav, sr = librosa.load(input, sr=model.sampling_rate) print(f"{noisy_wav.shape=}, {sr=}") print(f"Loaded audio in {time.time() - start_time:.2f} seconds") # Process the audio start_time = time.time() processed_wav, sr, notation = model( noisy_wav, segment_size=segment_size_seconds * 16000 ) print(f"{processed_wav.shape=}, {sr=}, {notation=}") print(f"Inference in {time.time() - start_time:.2f} seconds") return ((sr, processed_wav), "Processed.") @spaces.GPU() def run(input: str, segment_size_seconds: int): return process_audio(input, segment_size_seconds) @spaces.GPU(duration=60 * 2) def run2x(input: str, segment_size_seconds: int): return process_audio(input, segment_size_seconds) @spaces.GPU(duration=60 * 4) def run4x(input: str, segment_size_seconds: int): return process_audio(input, segment_size_seconds) with gr.Blocks() as app: gr.Markdown( "# MP-SENet Speech Enhancement\n\n[MP-SENet](https://github.com/yxlu-0102/MP-SENet) with ZeroGPU support.\n" "> Package is available at [JacobLinCool/MPSENet](https://github.com/JacobLinCool/MPSENet)" ) with gr.Row(): with gr.Column(): input = gr.Audio( label="Upload an audio file", type="filepath", show_download_button=True ) with gr.Column(): original_spec = gr.Plot(label="Original Spectrogram") with gr.Row(): btn = gr.Button(value="Process", variant="primary") with gr.Row(): info = gr.Markdown("Press the button to process the audio.") with gr.Row(): with gr.Column(): output = gr.Audio(label="Processed Audio") with gr.Column(): processed_spec = gr.Plot(label="Processed Spectrogram") with gr.Accordion("Advanced Settings", open=False): segment_size = gr.Slider( minimum=1, maximum=20, value=2, step=1, label="Segment Size (seconds)", info="The audio will be processed in segments of this size. Larger segments take more memory but may give more consistent results.", ) input.change( fn=plot_input, inputs=[input], outputs=[original_spec], ) output.change( fn=plot_output, inputs=[output], outputs=[processed_spec], ) btn.click( fn=run, inputs=[input, segment_size], outputs=[output, info], api_name="run", ) gr.Examples( examples=[ ["examples/p226_007.wav", 2], ["examples/p226_016.wav", 2], ["examples/p230_005.wav", 8], ["examples/p232_032.wav", 2], ["examples/p232_232.wav", 2], ], inputs=[input, segment_size], ) btn2x = gr.Button(value="Process", variant="primary", visible=False) btn2x.click( fn=run2x, inputs=[input, segment_size], outputs=[output, info], api_name="run2x", ) btn4x = gr.Button(value="Process", variant="primary", visible=False) btn4x.click( fn=run4x, inputs=[input, segment_size], outputs=[output, info], api_name="run4x", ) app.launch()