Spaces:
Build error
Build error
import spaces | |
import sys | |
import os | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'amt/src'))) | |
import subprocess | |
from typing import Tuple, Dict, Literal | |
from ctypes import ArgumentError | |
from html_helper import * | |
from model_helper import * | |
from pytube import YouTube | |
import torchaudio | |
import glob | |
import gradio as gr | |
# @title Load Checkpoint | |
model_name = 'YPTF.MoE+Multi (noPS)' # @param ["YMT3+", "YPTF+Single (noPS)", "YPTF+Multi (PS)", "YPTF.MoE+Multi (noPS)", "YPTF.MoE+Multi (PS)"] | |
precision = '16'# if torch.cuda.is_available() else '32'# @param ["32", "bf16-mixed", "16"] | |
project = '2024' | |
if model_name == "YMT3+": | |
checkpoint = "[email protected]" | |
args = [checkpoint, '-p', project, '-pr', precision] | |
elif model_name == "YPTF+Single (noPS)": | |
checkpoint = "ptf_all_cross_rebal5_mirst_xk2_edr005_attend_c_full_plus_b100@model.ckpt" | |
args = [checkpoint, '-p', project, '-enc', 'perceiver-tf', '-ac', 'spec', | |
'-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF+Multi (PS)": | |
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', | |
'-dec', 'multi-t5', '-nl', '26', '-enc', 'perceiver-tf', | |
'-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF.MoE+Multi (noPS)": | |
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b36_nops@last.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5', | |
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe', | |
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope', | |
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
elif model_name == "YPTF.MoE+Multi (PS)": | |
checkpoint = "mc13_256_g4_all_v7_mt3f_sqr_rms_moe_wf4_n8k2_silu_rope_rp_b80_ps2@model.ckpt" | |
args = [checkpoint, '-p', project, '-tk', 'mc13_full_plus_256', '-dec', 'multi-t5', | |
'-nl', '26', '-enc', 'perceiver-tf', '-sqr', '1', '-ff', 'moe', | |
'-wf', '4', '-nmoe', '8', '-kmoe', '2', '-act', 'silu', '-epe', 'rope', | |
'-rp', '1', '-ac', 'spec', '-hop', '300', '-atc', '1', '-pr', precision] | |
else: | |
raise ValueError(model_name) | |
model = load_model_checkpoint(args=args, device="cpu") | |
model.to("cuda") | |
# @title GradIO helper | |
def prepare_media(source_path_or_url: os.PathLike, | |
source_type: Literal['audio_filepath', 'youtube_url'], | |
delete_video: bool = True) -> Dict: | |
"""prepare media from source path or youtube, and return audio info""" | |
# Get audio_file | |
if source_type == 'audio_filepath': | |
audio_file = source_path_or_url | |
elif source_type == 'youtube_url': | |
# Download from youtube | |
try: | |
# Try PyTube first | |
yt = YouTube(source_path_or_url) | |
audio_stream = min(yt.streams.filter(only_audio=True), key=lambda s: s.bitrate) | |
mp4_file = audio_stream.download(output_path='downloaded') # ./downloaded | |
audio_file = mp4_file[:-3] + 'mp3' | |
subprocess.run(['ffmpeg', '-i', mp4_file, '-ac', '1', audio_file]) | |
os.remove(mp4_file) | |
except Exception as e: | |
try: | |
# Try alternative | |
print(f"Failed with PyTube, error: {e}. Trying yt-dlp...") | |
audio_file = './downloaded/yt_audio' | |
subprocess.run(['yt-dlp', '-x', source_path_or_url, '-f', 'bestaudio', | |
'-o', audio_file, '--audio-format', 'mp3', '--restrict-filenames', | |
'--force-overwrites']) | |
audio_file += '.mp3' | |
except Exception as e: | |
print(f"Alternative downloader failed, error: {e}. Please try again later!") | |
return None | |
else: | |
raise ValueError(source_type) | |
# Create info | |
info = torchaudio.info(audio_file) | |
return { | |
"filepath": audio_file, | |
"track_name": os.path.basename(audio_file).split('.')[0], | |
"sample_rate": int(info.sample_rate), | |
"bits_per_sample": int(info.bits_per_sample), | |
"num_channels": int(info.num_channels), | |
"num_frames": int(info.num_frames), | |
"duration": int(info.num_frames / info.sample_rate), | |
"encoding": str.lower(info.encoding), | |
} | |
def process_audio(audio_filepath): | |
if audio_filepath is None: | |
return None | |
audio_info = prepare_media(audio_filepath, source_type='audio_filepath') | |
midifile = transcribe(model, audio_info) | |
midifile = to_data_url(midifile) | |
return create_html_from_midi(midifile) # html midiplayer | |
def process_video(youtube_url): | |
if 'youtu' not in youtube_url: | |
return None | |
audio_info = prepare_media(youtube_url, source_type='youtube_url') | |
midifile = transcribe(model, audio_info) | |
midifile = to_data_url(midifile) | |
return create_html_from_midi(midifile) # html midiplayer | |
def play_video(youtube_url): | |
if 'youtu' not in youtube_url: | |
return None | |
return create_html_youtube_player(youtube_url) | |
AUDIO_EXAMPLES = glob.glob('examples/*.*', recursive=True) | |
YOUTUBE_EXAMPLES = ["https://www.youtube.com/watch?v=vMboypSkj3c", | |
"https://youtu.be/OXXRoa1U6xU?si=nhJ6lzGenCmk4P7R", | |
"https://youtu.be/EOJ0wH6h3rE?si=a99k6BnSajvNmXcn", | |
"https://youtu.be/7mjQooXt28o?si=qqmMxCxwqBlLPDI2", | |
"https://youtu.be/bnS-HK_lTHA?si=PQLVAab3QHMbv0S3https://youtu.be/zJB0nnOc7bM?si=EA1DN8nHWJcpQWp_", | |
"https://youtu.be/mIWYTg55h10?si=WkbtKfL6NlNquvT8"] | |
# theme = 'gradio/dracula_revamped' #'Insuz/Mocha' #gr.themes.Soft() | |
# with gr.Blocks(theme=theme) as demo: | |
theme = gr.Theme.from_hub("gradio/dracula_revamped") | |
theme.text_md = '9px' | |
theme.text_lg = '11px' | |
css = """ | |
.gradio-container { | |
background: linear-gradient(-45deg, #ee7752, #e73c7e, #23a6d5, #23d5ab); | |
background-size: 400% 400%; | |
animation: gradient 15s ease infinite; | |
height: 100vh; | |
} | |
@keyframes gradient { | |
0% { | |
background-position: 0% 50%; | |
} | |
50% { | |
background-position: 100% 50%; | |
} | |
100% { | |
background-position: 0% 50%; | |
} | |
} | |
""" | |
with gr.Blocks(theme=theme, css=css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=10): | |
gr.Markdown( | |
""" | |
## 🎶YourMT3+: Multi-instrument Music Transcription with Enhanced Transformer Architectures and Cross-dataset Stem Augmentation | |
### Model card: | |
- Model name: `YPTF.MoE+Multi` | |
- Encoder backbone: Perceiver-TF + Mixture of Experts (2/8) | |
- Decoder backbone: Multi-channel T5-small | |
- Tokenizer: MT3 tokens with Singing extension | |
- Dataset: YourMT3 dataset | |
- Augmentation strategy: Intra-/Cross dataset stem augment, No Pitch-shifting | |
- FP Precision: BF16-mixed for training, FP16 for inference | |
#### Caution: | |
- Currently running on CPU, and it takes longer than 3 minutes for a 30-second input. | |
- For acadmic reproduction purpose, we strongly recommend to use [Colab Demo](https://colab.research.google.com/drive/1AgOVEBfZknDkjmSRA7leoa81a2vrnhBG?usp=sharing) with multiple checkpoints. | |
### [Paper](https://arxiv.org/abs/2407.04822) [Code](https://github.com/mimbres/YourMT3) | |
""") | |
with gr.Group(): | |
with gr.Tab("Upload audio"): | |
# Input | |
audio_input = gr.Audio(label="Record Audio", type="filepath", | |
show_share_button=True, show_download_button=True) | |
# Display examples | |
gr.Examples(examples=AUDIO_EXAMPLES, inputs=audio_input) | |
# Submit button | |
transcribe_audio_button = gr.Button("Transcribe", variant="primary") | |
# Transcribe | |
output_tab1 = gr.HTML() | |
# audio_output = gr.Text(label="Audio Info") | |
# transcribe_audio_button.click(process_audio, inputs=audio_input, outputs=output_tab1) | |
transcribe_audio_button.click(process_audio, inputs=audio_input, outputs=output_tab1) | |
with gr.Tab("From YouTube"): | |
with gr.Row(): | |
# Input URL | |
youtube_url = gr.Textbox(label="YouTube Link URL", | |
placeholder="https://youtu.be/...") | |
# Play youtube | |
youtube_player = gr.HTML(render=True) | |
with gr.Row(): | |
# Play button | |
play_video_button = gr.Button("Play", variant="primary") | |
# Submit button | |
transcribe_video_button = gr.Button("Transcribe", variant="primary") | |
# Transcribe | |
output_tab2 = gr.HTML(render=True) | |
# video_output = gr.Text(label="Video Info") | |
transcribe_video_button.click(process_video, inputs=youtube_url, outputs=output_tab2) | |
# Play | |
play_video_button.click(play_video, inputs=youtube_url, outputs=youtube_player) | |
# Display examples | |
gr.Examples(examples=YOUTUBE_EXAMPLES, inputs=youtube_url) | |
demo.launch(debug=True) | |