# Copyright 2024 The YourMT3 Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Please see the details in the LICENSE file. import numpy as np import torch import json import soundfile as sf from utils.datasets_train import get_cache_data_loader def get_filelist(track_id: int) -> dict: filelist = '../../data/yourmt3_indexes/slakh_train_file_list.json' with open(filelist, 'r') as f: fl = json.load(f) new_filelist = dict() for key, value in fl.items(): if int(key) == track_id: new_filelist[0] = value return new_filelist def get_ds(track_id: int, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8): filelist = get_filelist(track_id) dl = get_cache_data_loader(filelist, 'train', 1, 1, random_amp_range=random_amp_range, stem_aug_prob=stem_aug_prob, shuffle=False) ds = dl.dataset return ds def gen_audio(track_id: int, n_segments: int = 30, random_amp_range: list = [1., 1.], stem_aug_prob: float = 0.8): ds = get_ds(track_id, random_amp_range, stem_aug_prob) audio = [] for i in range(n_segments): audio.append(ds.__getitem__(0)[0]) # audio.append(ds.__getitem__(i)[0]) audio = torch.concat(audio, dim=2).numpy()[0, 0, :] sf.write('audio.wav', audio, 16000, subtype='PCM_16') gen_audio(1, 20)