Spaces:
Runtime error
Runtime error
File size: 6,588 Bytes
f80c5ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import numpy as np
import torch
import librosa
import logging
import shutil
from pkg_resources import resource_filename
from accelerate import Accelerator
from datasets import load_dataset, DatasetDict, Audio
from .preprocess import Preprocessor, crop_feats_length
from .hubert import HubertFeatureExtractor, HubertModel, load_hubert
from .f0 import F0Extractor, RMVPE, load_rmvpe
from .constants import *
logger = logging.getLogger(__name__)
def extract_hubert_features(
rows,
hfe: HubertFeatureExtractor,
hubert: str | HubertModel | None,
device: torch.device,
):
if not hfe.is_loaded():
model = load_hubert(hubert, device)
hfe.load(model)
feats = []
for row in rows["wav_16k"]:
feat = hfe.extract_feature_from(row["array"].astype("float32"))
feats.append(feat)
return {"hubert_feats": feats}
def extract_f0_features(
rows, f0e: F0Extractor, rmvpe: str | RMVPE | None, device: torch.device
):
if not f0e.is_loaded():
model = load_rmvpe(rmvpe, device)
f0e.load(model)
f0s = []
f0nsfs = []
for row in rows["wav_16k"]:
f0nsf, f0 = f0e.extract_f0_from(row["array"].astype("float32"))
f0s.append(f0)
f0nsfs.append(f0nsf)
return {"f0": f0s, "f0nsf": f0nsfs}
def feature_postprocess(rows):
phones = rows["hubert_feats"]
for i, phone in enumerate(phones):
phone = np.repeat(phone, 2, axis=0)
n_num = min(phone.shape[0], 900)
phone = phone[:n_num, :]
phones[i] = phone
if "f0" in rows:
pitch = rows["f0"][i]
pitch = pitch[:n_num]
pitch = np.array(pitch, dtype=np.float32)
rows["f0"][i] = pitch
if "f0nsf" in rows:
pitchf = rows["f0nsf"][i]
pitchf = pitchf[:n_num]
rows["f0nsf"][i] = pitchf
return rows
def calculate_spectrogram(
rows, n_fft=N_FFT, hop_length=HOP_LENGTH, win_length=WIN_LENGTH
):
specs = []
hann_window = np.hanning(win_length)
pad_amount = int((win_length - hop_length) / 2)
for row in rows["wav_gt"]:
stft = librosa.stft(
np.pad(row["array"], (pad_amount, pad_amount), mode="reflect"),
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window=hann_window,
center=False,
)
specs.append(np.abs(stft) + 1e-6)
return {"spec": specs}
def fix_length(rows, hop_length=HOP_LENGTH):
for i, row in enumerate(rows["spec"]):
spec = np.array(row)
phone = np.array(rows["hubert_feats"][i])
pitch = np.array(rows["f0"][i])
pitchf = np.array(rows["f0nsf"][i])
wav_gt = np.array(rows["wav_gt"][i]["array"])
spec, phone, pitch, pitchf = crop_feats_length(spec, phone, pitch, pitchf)
phone_len = phone.shape[0]
wav_gt = wav_gt[: phone_len * hop_length]
rows["hubert_feats"][i] = phone
rows["f0"][i] = pitch
rows["f0nsf"][i] = pitchf
rows["spec"][i] = spec
rows["wav_gt"][i]["array"] = wav_gt
return rows
def prepare(
dir: str | DatasetDict,
sr=SR_48K,
hubert: str | HubertModel | None = None,
rmvpe: str | RMVPE | None = None,
batch_size=1,
accelerator: Accelerator = None,
include_mute=True,
stage=3,
):
"""
Prepare the dataset for training or evaluation.
Args:
dir (str | DatasetDict): The directory path or DatasetDict object containing the dataset.
sr (int, optional): The target sampling rate. Defaults to SR_48K.
hubert (str | HubertModel | None, optional): The Hubert model or its name to use for feature extraction. Defaults to None.
rmvpe (str | RMVPE | None, optional): The RMVPE model or its name to use for feature extraction. Defaults to None.
batch_size (int, optional): The batch size for processing the dataset. Defaults to 1.
accelerator (Accelerator, optional): The accelerator object for distributed training. Defaults to None.
include_mute (bool, optional): Whether to include a mute audio file in the directory dataset. Defaults to True.
stage (int, optional): The dataset preparation level to perform. Defaults to 3. (Stage 1 and 3 are CPU intensive, Stage 2 is GPU intensive.)
Returns:
DatasetDict: The prepared dataset.
"""
if accelerator is None:
accelerator = Accelerator()
if isinstance(dir, DatasetDict):
ds = dir
else:
mute_source = resource_filename("zerorvc", "assets/mute/mute48k.wav")
mute_dest = os.path.join(dir, "mute.wav")
if include_mute and not os.path.exists(mute_dest):
logger.info(f"Copying {mute_source} to {mute_dest}")
shutil.copy(mute_source, mute_dest)
ds: DatasetDict = load_dataset("audiofolder", data_dir=dir)
ds = ds.cast_column("audio", Audio(sampling_rate=sr))
if stage <= 0:
return ds
# Stage 1, CPU intensive
pp = Preprocessor(sr, 3.0)
def preprocess(rows):
wav_gt = []
wav_16k = []
for row in rows["audio"]:
slices = pp.preprocess_audio(row["array"])
for slice in slices:
wav_gt.append({"path": "", "array": slice, "sampling_rate": sr})
slice16k = librosa.resample(slice, orig_sr=sr, target_sr=SR_16K)
wav_16k.append({"path": "", "array": slice16k, "sampling_rate": SR_16K})
return {"wav_gt": wav_gt, "wav_16k": wav_16k}
ds = ds.map(
preprocess, batched=True, batch_size=batch_size, remove_columns=["audio"]
)
ds = ds.cast_column("wav_gt", Audio(sampling_rate=sr))
ds = ds.cast_column("wav_16k", Audio(sampling_rate=SR_16K))
if stage <= 1:
return ds
# Stage 2, GPU intensive
hfe = HubertFeatureExtractor()
ds = ds.map(
extract_hubert_features,
batched=True,
batch_size=batch_size,
fn_kwargs={"hfe": hfe, "hubert": hubert, "device": accelerator.device},
)
f0e = F0Extractor()
ds = ds.map(
extract_f0_features,
batched=True,
batch_size=batch_size,
fn_kwargs={"f0e": f0e, "rmvpe": rmvpe, "device": accelerator.device},
)
if stage <= 2:
return ds
# Stage 3, CPU intensive
ds = ds.map(feature_postprocess, batched=True, batch_size=batch_size)
ds = ds.map(calculate_spectrogram, batched=True, batch_size=batch_size)
ds = ds.map(fix_length, batched=True, batch_size=batch_size)
return ds
|