File size: 5,728 Bytes
f80c5ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import tempfile
import gradio as gr
import torch
from zerorvc import RVCTrainer, pretrained_checkpoints, SynthesizerTrnMs768NSFsid
from zerorvc.trainer import TrainingCheckpoint
from datasets import load_from_disk
from huggingface_hub import snapshot_download
from .zero import zero
from .model import accelerator, device
from .constants import BATCH_SIZE, ROOT_EXP_DIR, TRAINING_EPOCHS


@zero(duration=240)
def train_model(exp_dir: str, progress=gr.Progress()):
    dataset = os.path.join(exp_dir, "dataset")
    if not os.path.exists(dataset):
        raise gr.Error("Dataset not found. Please prepare the dataset first.")

    ds = load_from_disk(dataset)
    checkpoint_dir = os.path.join(exp_dir, "checkpoints")
    trainer = RVCTrainer(checkpoint_dir)

    resume_from = trainer.latest_checkpoint()
    if resume_from is None:
        resume_from = pretrained_checkpoints()
        gr.Info(f"Starting training from pretrained checkpoints.")
    else:
        gr.Info(f"Resuming training from {resume_from}")

    tqdm = progress.tqdm(
        trainer.train(
            dataset=ds["train"],
            resume_from=resume_from,
            batch_size=BATCH_SIZE,
            epochs=TRAINING_EPOCHS,
            accelerator=accelerator,
        ),
        total=TRAINING_EPOCHS,
        unit="epochs",
        desc="Training",
    )

    for ckpt in tqdm:
        info = f"Epoch: {ckpt.epoch} loss: (gen: {ckpt.loss_gen:.4f}, fm: {ckpt.loss_fm:.4f}, mel: {ckpt.loss_mel:.4f}, kl: {ckpt.loss_kl:.4f}, disc: {ckpt.loss_disc:.4f})"
        print(info)
        latest: TrainingCheckpoint = ckpt

    latest.save(trainer.checkpoint_dir)
    latest.G.save_pretrained(trainer.checkpoint_dir)

    result = f"{TRAINING_EPOCHS} epochs trained. Latest loss: (gen: {latest.loss_gen:.4f}, fm: {latest.loss_fm:.4f}, mel: {latest.loss_mel:.4f}, kl: {latest.loss_kl:.4f}, disc: {latest.loss_disc:.4f})"

    del trainer
    if device.type == "cuda":
        torch.cuda.empty_cache()

    return result


def upload_model(exp_dir: str, repo: str, hf_token: str):
    checkpoint_dir = os.path.join(exp_dir, "checkpoints")
    if not os.path.exists(checkpoint_dir):
        raise gr.Error("Model not found")

    gr.Info("Uploading model")
    model = SynthesizerTrnMs768NSFsid.from_pretrained(checkpoint_dir)
    model.push_to_hub(repo, token=hf_token, private=True)
    gr.Info("Model uploaded successfully")


def upload_checkpoints(exp_dir: str, repo: str, hf_token: str):
    checkpoint_dir = os.path.join(exp_dir, "checkpoints")
    if not os.path.exists(checkpoint_dir):
        raise gr.Error("Checkpoints not found")

    gr.Info("Uploading checkpoints")
    trainer = RVCTrainer(checkpoint_dir)
    trainer.push_to_hub(repo, token=hf_token, private=True)
    gr.Info("Checkpoints uploaded successfully")


def fetch_model(exp_dir: str, repo: str, hf_token: str):
    if not exp_dir:
        exp_dir = tempfile.mkdtemp(dir=ROOT_EXP_DIR)
    checkpoint_dir = os.path.join(exp_dir, "checkpoints")

    gr.Info("Fetching model")
    files = ["README.md", "config.json", "model.safetensors"]
    snapshot_download(
        repo, token=hf_token, local_dir=checkpoint_dir, allow_patterns=files
    )
    gr.Info("Model fetched successfully")

    return exp_dir


def fetch_checkpoints(exp_dir: str, repo: str, hf_token: str):
    if not exp_dir:
        exp_dir = tempfile.mkdtemp(dir=ROOT_EXP_DIR)
    checkpoint_dir = os.path.join(exp_dir, "checkpoints")

    gr.Info("Fetching checkpoints")
    snapshot_download(repo, token=hf_token, local_dir=checkpoint_dir)
    gr.Info("Checkpoints fetched successfully")

    return exp_dir


class TrainTab:
    def __init__(self):
        pass

    def ui(self):
        gr.Markdown("# Training")
        gr.Markdown(
            "You can start training the model by clicking the button below. "
            f"Each time you click the button, the model will train for {TRAINING_EPOCHS} epochs, which takes about 3 minutes on ZeroGPU (A100). "
        )

        with gr.Row():
            self.train_btn = gr.Button(value="Train", variant="primary")
            self.result = gr.Textbox(label="Training Result", lines=3)

        gr.Markdown("## Sync Model and Checkpoints with Hugging Face")
        gr.Markdown(
            "You can upload the trained model and checkpoints to Hugging Face for sharing or further training."
        )

        self.repo = gr.Textbox(label="Repository ID", placeholder="username/repo")
        with gr.Row():
            self.upload_model_btn = gr.Button(value="Upload Model", variant="primary")
            self.upload_checkpoints_btn = gr.Button(
                value="Upload Checkpoints", variant="primary"
            )
        with gr.Row():
            self.fetch_mode_btn = gr.Button(value="Fetch Model", variant="primary")
            self.fetch_checkpoints_btn = gr.Button(
                value="Fetch Checkpoints", variant="primary"
            )

    def build(self, exp_dir: gr.Textbox, hf_token: gr.Textbox):
        self.train_btn.click(
            fn=train_model,
            inputs=[exp_dir],
            outputs=[self.result],
        )

        self.upload_model_btn.click(
            fn=upload_model,
            inputs=[exp_dir, self.repo, hf_token],
        )

        self.upload_checkpoints_btn.click(
            fn=upload_checkpoints,
            inputs=[exp_dir, self.repo, hf_token],
        )

        self.fetch_mode_btn.click(
            fn=fetch_model,
            inputs=[exp_dir, self.repo, hf_token],
            outputs=[exp_dir],
        )

        self.fetch_checkpoints_btn.click(
            fn=fetch_checkpoints,
            inputs=[exp_dir, self.repo, hf_token],
            outputs=[exp_dir],
        )