--- title: ZeroRVC emoji: 🎙️ colorFrom: gray colorTo: gray sdk: gradio sdk_version: 4.37.2 app_file: app.py pinned: false --- # ZeroRVC Run Retrieval-based Voice Conversion training and inference with ease. ## Features - [x] Dataset Preparation - [x] Hugging Face Datasets Integration - [x] Hugging Face Accelerate Integration - [x] Trainer API - [x] Inference API - [ ] Index Support - [x] Tensorboard Support - [ ] FP16 Support ## Dataset Preparation ZeroRVC provides a simple API to prepare your dataset for training. You only need to provide the path to your audio files. The feature extraction models will be downloaded automatically, or you can provide your own with the `hubert` and `rmvpe` arguments. ```py from datasets import load_dataset from zerorvc import prepare, RVCTrainer dataset = load_dataset("my-audio-dataset") dataset = prepare(dataset) trainer = RVCTrainer( "my-rvc-model", dataset_train=dataset["train"], dataset_test=dataset["test"], ) trainer.train(epochs=100, batch_size=8, upload="someone/rvc-test-1") ``` ## Inference ZeroRVC provides an easy API to convert your voice with the trained model. ```py from zerorvc import RVC import soundfile as sf rvc = RVC.from_pretrained("someone/rvc-test-1") samples = rvc.convert("test.mp3") sf.write("output.wav", samples, rvc.sr) ```