import torch import yaml from audiosr import download_checkpoint, default_audioldm_config, LatentDiffusion def load_audiosr(ckpt_path=None, config=None, device=None, model_name="basic"): if device is None or device == "auto": if torch.cuda.is_available(): device = torch.device("cuda:0") elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") print("Loading AudioSR: %s" % model_name) print("Loading model on %s" % device) ckpt_path = download_checkpoint(model_name) if config is not None: assert type(config) is str config = yaml.load(open(config, "r"), Loader=yaml.FullLoader) else: config = default_audioldm_config(model_name) # # Use text as condition instead of using waveform during training config["model"]["params"]["device"] = device # config["model"]["params"]["cond_stage_key"] = "text" # No normalization here latent_diffusion = LatentDiffusion(**config["model"]["params"]) resume_from_checkpoint = ckpt_path checkpoint = torch.load(resume_from_checkpoint, map_location="cpu") latent_diffusion.load_state_dict(checkpoint["state_dict"], strict=True) latent_diffusion.eval() latent_diffusion = latent_diffusion.to(device) return latent_diffusion