Milestone3 / inference-app.py
Jainesh212's picture
Create inference-app.py
3042494
raw
history blame
9.06 kB
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer,AutoModel
import random
from bs4 import BeautifulSoup
import re
from transformers import AutoModelForSequenceClassification
import pytorch_lightning as pl
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_path = "train.csv"
test_path = "test.csv"
test_labels_paths = "test_labels.csv"
test_df = pd.read_csv(test_path)
test_labels_df = pd.read_csv(test_labels_paths)
test_df = pd.concat([test_df.iloc[:, 1], test_labels_df.iloc[:, 1:]], axis = 1)
test_df.to_csv("test-dataset.csv")
test_dataset_path = "test-dataset.csv"
#Lets make a new column labeled "healthy"
def healthy_filter(df):
if (df["toxic"]==0) and (df["severe_toxic"]==0) and (df["obscene"]==0) and (df["threat"]==0) and (df["insult"]==0) and (df["identity_hate"]==0):
return 1
else:
return 0
attributes = ['toxic', 'severe_toxic', 'obscene', 'threat',
'insult', 'identity_hate', 'healthy']
class Comments_Dataset(Dataset):
def __init__(self, data_path, tokenizer, attributes, max_token_len = 128, sample=5000):
self.data_path = data_path
self.tokenizer = tokenizer
self.attributes = attributes
self.max_token_len = max_token_len
self.sample = sample
self._prepare_data()
def _prepare_data(self):
data = pd.read_csv(self.data_path)
data["healthy"] = data.apply(healthy_filter,axis=1)
data["unhealthy"] = np.where(data['healthy']==1, 0, 1)
if self.sample is not None:
unhealthy = data.loc[data["healthy"] == 0]
healthy = data.loc[data["healthy"] ==1]
self.data = pd.concat([unhealthy, healthy.sample(self.sample, random_state=42)])
else:
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self,index):
item = self.data.iloc[index]
comment = str(item.comment_text)
attributes = torch.FloatTensor(item[self.attributes])
tokens = self.tokenizer.encode_plus(comment,
add_special_tokens=True,
return_tensors='pt',
truncation=True,
padding='max_length',
max_length=self.max_token_len,
return_attention_mask = True)
return {'input_ids': tokens.input_ids.flatten(), 'attention_mask': tokens.attention_mask.flatten(), 'labels': attributes}
class Comments_Data_Module(pl.LightningDataModule):
def __init__(self, train_path, val_path, attributes, batch_size: int = 16, max_token_length: int = 128, model_name='roberta-base'):
super().__init__()
self.train_path = train_path
self.val_path = val_path
self.attributes = attributes
self.batch_size = batch_size
self.max_token_length = max_token_length
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
def setup(self, stage = None):
if stage in (None, "fit"):
self.train_dataset = Comments_Dataset(self.train_path, attributes=self.attributes, tokenizer=self.tokenizer)
self.val_dataset = Comments_Dataset(self.val_path, attributes=self.attributes, tokenizer=self.tokenizer, sample=None)
if stage == 'predict':
self.val_dataset = Comments_Dataset(self.val_path, attributes=self.attributes, tokenizer=self.tokenizer, sample=None)
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size = self.batch_size, num_workers=4, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size = self.batch_size, num_workers=4, shuffle=False)
def predict_dataloader(self):
return DataLoader(self.val_dataset, batch_size = self.batch_size, num_workers=4, shuffle=False)
comments_data_module = Comments_Data_Module(train_path, test_dataset_path, attributes=attributes)
comments_data_module.setup()
comments_data_module.train_dataloader()
class Comment_Classifier(pl.LightningModule):
#the config dict has the hugginface parameters in it
def __init__(self, config: dict):
super().__init__()
self.config = config
self.pretrained_model = AutoModel.from_pretrained(config['model_name'], return_dict = True)
self.hidden = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.pretrained_model.config.hidden_size)
self.classifier = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.config['n_labels'])
torch.nn.init.xavier_uniform_(self.classifier.weight)
self.loss_func = nn.CrossEntropyLoss()
self.dropout = nn.Dropout()
def forward(self, input_ids, attention_mask, labels=None):
# roberta layer
output = self.pretrained_model(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = torch.mean(output.last_hidden_state, 1)
# final logits / classification layers
pooled_output = self.dropout(pooled_output)
pooled_output = self.hidden(pooled_output)
pooled_output = F.relu(pooled_output)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
# calculate loss
loss = 0
if labels is not None:
loss = self.loss_func(logits.view(-1, self.config['n_labels']), labels.view(-1, self.config['n_labels']))
return loss, logits
def training_step(self, batch, batch_index):
loss, outputs = self(**batch)
self.log("train loss ", loss, prog_bar = True, logger=True)
return {"loss":loss, "predictions":outputs, "labels": batch["labels"]}
def validation_step(self, batch, batch_index):
loss, outputs = self(**batch)
self.log("validation loss ", loss, prog_bar = True, logger=True)
return {"val_loss": loss, "predictions":outputs, "labels": batch["labels"]}
def predict_step(self, batch, batch_index):
loss, outputs = self(**batch)
return outputs
def configure_optimizers(self):
optimizer = AdamW(self.parameters(), lr=self.config['lr'], weight_decay=self.config['weight_decay'])
total_steps = self.config['train_size']/self.config['batch_size']
warmup_steps = math.floor(total_steps * self.config['warmup'])
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
return [optimizer],[scheduler]
config = {
'model_name': 'distilroberta-base',
'n_labels': len(attributes),
'batch_size': 128,
'lr': 1.5e-6,
'warmup': 0.2,
'train_size': len(comments_data_module.train_dataloader()),
'weight_decay': 0.001,
'n_epochs': 100
}
model_name = 'distilroberta-base'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = Comment_Classifier(config=config)
model.load_state_dict(torch.load("model_state_dict.pt"))
model.eval()
def prepare_tokenized_review(raw_review):
# Remove HTML tags with BS
review_text = BeautifulSoup(raw_review).get_text()
# Removing non-letters using a regular expression
review_text = re.sub("[^a-zA-Z!?]"," ", review_text)
# Convert words to lower case and split them
words = review_text.lower().split()
return " ".join(words)
def get_encodings(text):
MAX_LEN=256
encodings = tokenizer.encode_plus(
text,
None,
add_special_tokens=True,
max_length=MAX_LEN,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt')
return encodings
def run_inference(encoding):
with torch.no_grad():
input_ids = encoding['input_ids'].to(device, dtype=torch.long)
attention_mask = encoding['attention_mask'].to(device, dtype=torch.long)
output = model(input_ids, attention_mask)
final_output = torch.softmax(output[1][0],dim=0).cpu()
print(final_output.numpy().tolist())
return final_output.numpy().tolist()
test_tweets = test_df["comment_text"].values
#streamlit section
models = ["distilroberta-base"]
model_pointers = ["default: distilroberta-base"]
# current_random_tweet = test_tweets[random.randint(0,len(test_tweets))]
# current_random_tweet = prepare_tokenized_review(current_random_tweet)
st.write("1. Hit the button to view and see the analyis of a random tweet")
with st.form(key="init_form"):
current_random_tweet = test_tweets[random.randint(0,len(test_tweets))]
current_random_tweet = prepare_tokenized_review(current_random_tweet)
choice = st.selectbox("Choose Model", model_pointers)
user_picked_model = models[model_pointers.index(choice)]
with st.spinner("Analyzing..."):
text_encoding = get_encodings(current_random_tweet)
result = run_inference(text_encoding)
df = pd.DataFrame({"Tweet":current_random_tweet}, index=[0])
df["Highest Toxicity Class"] = attributes[result.index(max(result))]
df["Sentiment Score"] = max(result)
st.table(df)
next_tweet = st.form_submit_button("Next Tweet")
if next_tweet:
with st.spinner("Analyzing..."):
st.write("")