Jainesh212 commited on
Commit
500aba2
1 Parent(s): c2f5797

Create finetuning.py

Browse files
Files changed (1) hide show
  1. finetuning.py +214 -0
finetuning.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import os
4
+ from tqdm.notebook import tqdm
5
+ import pandas as pd
6
+ from torch import cuda
7
+ import torch
8
+ import transformers
9
+ from torch.utils.data import Dataset, DataLoader
10
+ from transformers import DistilBertModel, DistilBertTokenizer
11
+ import shutil
12
+
13
+ device = 'cuda' if cuda.is_available() else 'cpu'
14
+
15
+ label_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
16
+
17
+ df_train = pd.read_csv("train.csv")
18
+
19
+
20
+ MAX_LEN = 512
21
+ TRAIN_BATCH_SIZE = 32
22
+ VALID_BATCH_SIZE = 32
23
+ EPOCHS = 2
24
+ LEARNING_RATE = 1e-05
25
+
26
+ df_train = df_train.sample(n=512)
27
+
28
+
29
+ train_size = 0.8
30
+ df_train_sampled = df_train.sample(frac=train_size, random_state=44)
31
+ df_val = df_train.drop(df_train_sampled.index).reset_index(drop=True)
32
+ df_train_sampled = df_train_sampled.reset_index(drop=True)
33
+
34
+ model_name = 'distilbert-base-uncased'
35
+
36
+ tokenizer = DistilBertTokenizer.from_pretrained(model_name, do_lower_case=True)
37
+
38
+
39
+ class ToxicDataset(Dataset):
40
+ def __init__(self, data, tokenizer, max_len):
41
+ self.data = data
42
+ self.tokenizer = tokenizer
43
+ self.max_len = max_len
44
+ self.labels = self.data[label_cols].values
45
+
46
+ def __len__(self):
47
+ return len(self.data.id)
48
+
49
+ def __getitem__(self, idx):
50
+ text = self.data.comment_text
51
+ tokenized_text = self.tokenizer.encode_plus(
52
+ str( text ),
53
+ None,
54
+ add_special_tokens=True,
55
+ max_length=self.max_len,
56
+ padding='max_length',
57
+ return_token_type_ids=True,
58
+ truncation=True,
59
+ return_attention_mask=True,
60
+ return_tensors='pt'
61
+ )
62
+
63
+ return {
64
+ 'input_ids': tokenized_text['input_ids'].flatten(),
65
+ 'attention_mask': tokenized_text['attention_mask'].flatten(),
66
+ 'targets': torch.FloatTensor(self.labels[idx])
67
+ }
68
+
69
+ train_dataset = ToxicDataset(df_train_sampled, tokenizer, MAX_LEN)
70
+ valid_dataset = ToxicDataset(df_val, tokenizer, MAX_LEN)
71
+
72
+ train_data_loader = torch.utils.data.DataLoader(train_dataset,
73
+ batch_size=TRAIN_BATCH_SIZE,
74
+ shuffle=True,
75
+ num_workers=0
76
+ )
77
+
78
+ val_data_loader = torch.utils.data.DataLoader(valid_dataset,
79
+ batch_size=VALID_BATCH_SIZE,
80
+ shuffle=False,
81
+ num_workers=0
82
+ )
83
+
84
+
85
+ class CustomDistilBertClass(torch.nn.Module):
86
+ def __init__(self):
87
+ super(CustomDistilBertClass, self).__init__()
88
+ self.distilbert_model = DistilBertModel.from_pretrained(model_name, return_dict=True)
89
+ self.dropout = torch.nn.Dropout(0.3)
90
+ self.linear = torch.nn.Linear(768, 6)
91
+
92
+ def forward(self, input_ids, attn_mask):
93
+ output = self.distilbert_model(
94
+ input_ids,
95
+ attention_mask=attn_mask,
96
+ )
97
+ output_dropout = self.dropout(output.last_hidden_state)
98
+ output = self.linear(output_dropout)
99
+ return output
100
+
101
+ model = CustomDistilBertClass()
102
+ model.to(device)
103
+
104
+ def loss_fn(outputs, targets):
105
+ return torch.nn.BCEWithLogitsLoss()(outputs, targets)
106
+
107
+ optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
108
+
109
+ def train_model(n_epochs, training_loader, validation_loader, model,
110
+ optimizer, checkpoint_path, best_model_path):
111
+
112
+ valid_loss_min = np.Inf
113
+
114
+ for epoch in range(1, n_epochs+1):
115
+ train_loss = 0
116
+ valid_loss = 0
117
+
118
+ model.train()
119
+ print('############# Epoch {}: Training Start #############'.format(epoch))
120
+ for batch_idx, data in enumerate(training_loader):
121
+ ids = data['input_ids'].to(device, dtype = torch.long)
122
+ mask = data['attention_mask'].to(device, dtype = torch.long)
123
+
124
+ outputs = model(ids, mask, )
125
+ outputs = outputs[:, 0, :]
126
+ targets = data['targets'].to(device, dtype = torch.float)
127
+ loss = loss_fn(outputs, targets)
128
+
129
+ optimizer.zero_grad()
130
+ loss.backward()
131
+ optimizer.step()
132
+
133
+ train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.item() - train_loss))
134
+
135
+ print('############# Epoch {}: Training End #############'.format(epoch))
136
+
137
+ print('############# Epoch {}: Validation Start #############'.format(epoch))
138
+
139
+ model.eval()
140
+
141
+ with torch.no_grad():
142
+ for batch_idx, data in enumerate(validation_loader, 0):
143
+ ids = data['input_ids'].to(device, dtype = torch.long)
144
+ mask = data['attention_mask'].to(device, dtype = torch.long)
145
+
146
+ targets = data['targets'].to(device, dtype = torch.float)
147
+ outputs = model(ids, mask, )
148
+ outputs = outputs[:, 0, :]
149
+ loss = loss_fn(outputs, targets)
150
+
151
+ valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.item() - valid_loss))
152
+
153
+ print('############# Epoch {}: Validation End #############'.format(epoch))
154
+ train_loss = train_loss/len(training_loader)
155
+ valid_loss = valid_loss/len(validation_loader)
156
+ print('Epoch: {} \tAvgerage Training Loss: {:.6f} \tAverage Validation Loss: {:.6f}'.format(
157
+ epoch,
158
+ train_loss,
159
+ valid_loss
160
+ ))
161
+
162
+ checkpoint = {
163
+ 'epoch': epoch + 1,
164
+ 'valid_loss_min': valid_loss,
165
+ 'state_dict': model.state_dict(),
166
+ 'optimizer': optimizer.state_dict()
167
+ }
168
+
169
+ save_ckp(checkpoint, False, checkpoint_path, best_model_path)
170
+
171
+ if valid_loss <= valid_loss_min:
172
+ print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min,valid_loss))
173
+ save_ckp(checkpoint, True, checkpoint_path, best_model_path)
174
+ valid_loss_min = valid_loss
175
+
176
+ print('############# Epoch {} Done #############\n'.format(epoch))
177
+
178
+ return model
179
+
180
+ def load_ckp(checkpoint_fpath, model, optimizer):
181
+ """
182
+ checkpoint_path: path to save checkpoint
183
+ model: model that we want to load checkpoint parameters into
184
+ optimizer: optimizer we defined in previous training
185
+ """
186
+ checkpoint = torch.load(checkpoint_fpath)
187
+ model.load_state_dict(checkpoint['state_dict'])
188
+ optimizer.load_state_dict(checkpoint['optimizer'])
189
+ valid_loss_min = checkpoint['valid_loss_min']
190
+ return model, optimizer, checkpoint['epoch'], valid_loss_min.item()
191
+
192
+ def save_ckp(state, is_best, checkpoint_path, best_model_path):
193
+ """
194
+ state: checkpoint we want to save
195
+ is_best: is this the best checkpoint; min validation loss
196
+ checkpoint_path: path to save checkpoint
197
+ best_model_path: path to save best model
198
+ """
199
+ f_path = checkpoint_path
200
+ torch.save(state, f_path)
201
+ if is_best:
202
+ best_fpath = best_model_path
203
+ shutil.copyfile(f_path, best_fpath)
204
+
205
+ ckpt_path = "model.pt"
206
+ best_model_path = "best_model.pt"
207
+
208
+ trained_model = train_model(EPOCHS,
209
+ train_data_loader,
210
+ val_data_loader,
211
+ model,
212
+ optimizer,
213
+ ckpt_path,
214
+ best_model_path)