Spaces:
Runtime error
Runtime error
Jainesh212
commited on
Commit
•
500aba2
1
Parent(s):
c2f5797
Create finetuning.py
Browse files- finetuning.py +214 -0
finetuning.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import os
|
4 |
+
from tqdm.notebook import tqdm
|
5 |
+
import pandas as pd
|
6 |
+
from torch import cuda
|
7 |
+
import torch
|
8 |
+
import transformers
|
9 |
+
from torch.utils.data import Dataset, DataLoader
|
10 |
+
from transformers import DistilBertModel, DistilBertTokenizer
|
11 |
+
import shutil
|
12 |
+
|
13 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
14 |
+
|
15 |
+
label_cols = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
|
16 |
+
|
17 |
+
df_train = pd.read_csv("train.csv")
|
18 |
+
|
19 |
+
|
20 |
+
MAX_LEN = 512
|
21 |
+
TRAIN_BATCH_SIZE = 32
|
22 |
+
VALID_BATCH_SIZE = 32
|
23 |
+
EPOCHS = 2
|
24 |
+
LEARNING_RATE = 1e-05
|
25 |
+
|
26 |
+
df_train = df_train.sample(n=512)
|
27 |
+
|
28 |
+
|
29 |
+
train_size = 0.8
|
30 |
+
df_train_sampled = df_train.sample(frac=train_size, random_state=44)
|
31 |
+
df_val = df_train.drop(df_train_sampled.index).reset_index(drop=True)
|
32 |
+
df_train_sampled = df_train_sampled.reset_index(drop=True)
|
33 |
+
|
34 |
+
model_name = 'distilbert-base-uncased'
|
35 |
+
|
36 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name, do_lower_case=True)
|
37 |
+
|
38 |
+
|
39 |
+
class ToxicDataset(Dataset):
|
40 |
+
def __init__(self, data, tokenizer, max_len):
|
41 |
+
self.data = data
|
42 |
+
self.tokenizer = tokenizer
|
43 |
+
self.max_len = max_len
|
44 |
+
self.labels = self.data[label_cols].values
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return len(self.data.id)
|
48 |
+
|
49 |
+
def __getitem__(self, idx):
|
50 |
+
text = self.data.comment_text
|
51 |
+
tokenized_text = self.tokenizer.encode_plus(
|
52 |
+
str( text ),
|
53 |
+
None,
|
54 |
+
add_special_tokens=True,
|
55 |
+
max_length=self.max_len,
|
56 |
+
padding='max_length',
|
57 |
+
return_token_type_ids=True,
|
58 |
+
truncation=True,
|
59 |
+
return_attention_mask=True,
|
60 |
+
return_tensors='pt'
|
61 |
+
)
|
62 |
+
|
63 |
+
return {
|
64 |
+
'input_ids': tokenized_text['input_ids'].flatten(),
|
65 |
+
'attention_mask': tokenized_text['attention_mask'].flatten(),
|
66 |
+
'targets': torch.FloatTensor(self.labels[idx])
|
67 |
+
}
|
68 |
+
|
69 |
+
train_dataset = ToxicDataset(df_train_sampled, tokenizer, MAX_LEN)
|
70 |
+
valid_dataset = ToxicDataset(df_val, tokenizer, MAX_LEN)
|
71 |
+
|
72 |
+
train_data_loader = torch.utils.data.DataLoader(train_dataset,
|
73 |
+
batch_size=TRAIN_BATCH_SIZE,
|
74 |
+
shuffle=True,
|
75 |
+
num_workers=0
|
76 |
+
)
|
77 |
+
|
78 |
+
val_data_loader = torch.utils.data.DataLoader(valid_dataset,
|
79 |
+
batch_size=VALID_BATCH_SIZE,
|
80 |
+
shuffle=False,
|
81 |
+
num_workers=0
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
class CustomDistilBertClass(torch.nn.Module):
|
86 |
+
def __init__(self):
|
87 |
+
super(CustomDistilBertClass, self).__init__()
|
88 |
+
self.distilbert_model = DistilBertModel.from_pretrained(model_name, return_dict=True)
|
89 |
+
self.dropout = torch.nn.Dropout(0.3)
|
90 |
+
self.linear = torch.nn.Linear(768, 6)
|
91 |
+
|
92 |
+
def forward(self, input_ids, attn_mask):
|
93 |
+
output = self.distilbert_model(
|
94 |
+
input_ids,
|
95 |
+
attention_mask=attn_mask,
|
96 |
+
)
|
97 |
+
output_dropout = self.dropout(output.last_hidden_state)
|
98 |
+
output = self.linear(output_dropout)
|
99 |
+
return output
|
100 |
+
|
101 |
+
model = CustomDistilBertClass()
|
102 |
+
model.to(device)
|
103 |
+
|
104 |
+
def loss_fn(outputs, targets):
|
105 |
+
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
|
106 |
+
|
107 |
+
optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
|
108 |
+
|
109 |
+
def train_model(n_epochs, training_loader, validation_loader, model,
|
110 |
+
optimizer, checkpoint_path, best_model_path):
|
111 |
+
|
112 |
+
valid_loss_min = np.Inf
|
113 |
+
|
114 |
+
for epoch in range(1, n_epochs+1):
|
115 |
+
train_loss = 0
|
116 |
+
valid_loss = 0
|
117 |
+
|
118 |
+
model.train()
|
119 |
+
print('############# Epoch {}: Training Start #############'.format(epoch))
|
120 |
+
for batch_idx, data in enumerate(training_loader):
|
121 |
+
ids = data['input_ids'].to(device, dtype = torch.long)
|
122 |
+
mask = data['attention_mask'].to(device, dtype = torch.long)
|
123 |
+
|
124 |
+
outputs = model(ids, mask, )
|
125 |
+
outputs = outputs[:, 0, :]
|
126 |
+
targets = data['targets'].to(device, dtype = torch.float)
|
127 |
+
loss = loss_fn(outputs, targets)
|
128 |
+
|
129 |
+
optimizer.zero_grad()
|
130 |
+
loss.backward()
|
131 |
+
optimizer.step()
|
132 |
+
|
133 |
+
train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.item() - train_loss))
|
134 |
+
|
135 |
+
print('############# Epoch {}: Training End #############'.format(epoch))
|
136 |
+
|
137 |
+
print('############# Epoch {}: Validation Start #############'.format(epoch))
|
138 |
+
|
139 |
+
model.eval()
|
140 |
+
|
141 |
+
with torch.no_grad():
|
142 |
+
for batch_idx, data in enumerate(validation_loader, 0):
|
143 |
+
ids = data['input_ids'].to(device, dtype = torch.long)
|
144 |
+
mask = data['attention_mask'].to(device, dtype = torch.long)
|
145 |
+
|
146 |
+
targets = data['targets'].to(device, dtype = torch.float)
|
147 |
+
outputs = model(ids, mask, )
|
148 |
+
outputs = outputs[:, 0, :]
|
149 |
+
loss = loss_fn(outputs, targets)
|
150 |
+
|
151 |
+
valid_loss = valid_loss + ((1 / (batch_idx + 1)) * (loss.item() - valid_loss))
|
152 |
+
|
153 |
+
print('############# Epoch {}: Validation End #############'.format(epoch))
|
154 |
+
train_loss = train_loss/len(training_loader)
|
155 |
+
valid_loss = valid_loss/len(validation_loader)
|
156 |
+
print('Epoch: {} \tAvgerage Training Loss: {:.6f} \tAverage Validation Loss: {:.6f}'.format(
|
157 |
+
epoch,
|
158 |
+
train_loss,
|
159 |
+
valid_loss
|
160 |
+
))
|
161 |
+
|
162 |
+
checkpoint = {
|
163 |
+
'epoch': epoch + 1,
|
164 |
+
'valid_loss_min': valid_loss,
|
165 |
+
'state_dict': model.state_dict(),
|
166 |
+
'optimizer': optimizer.state_dict()
|
167 |
+
}
|
168 |
+
|
169 |
+
save_ckp(checkpoint, False, checkpoint_path, best_model_path)
|
170 |
+
|
171 |
+
if valid_loss <= valid_loss_min:
|
172 |
+
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(valid_loss_min,valid_loss))
|
173 |
+
save_ckp(checkpoint, True, checkpoint_path, best_model_path)
|
174 |
+
valid_loss_min = valid_loss
|
175 |
+
|
176 |
+
print('############# Epoch {} Done #############\n'.format(epoch))
|
177 |
+
|
178 |
+
return model
|
179 |
+
|
180 |
+
def load_ckp(checkpoint_fpath, model, optimizer):
|
181 |
+
"""
|
182 |
+
checkpoint_path: path to save checkpoint
|
183 |
+
model: model that we want to load checkpoint parameters into
|
184 |
+
optimizer: optimizer we defined in previous training
|
185 |
+
"""
|
186 |
+
checkpoint = torch.load(checkpoint_fpath)
|
187 |
+
model.load_state_dict(checkpoint['state_dict'])
|
188 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
189 |
+
valid_loss_min = checkpoint['valid_loss_min']
|
190 |
+
return model, optimizer, checkpoint['epoch'], valid_loss_min.item()
|
191 |
+
|
192 |
+
def save_ckp(state, is_best, checkpoint_path, best_model_path):
|
193 |
+
"""
|
194 |
+
state: checkpoint we want to save
|
195 |
+
is_best: is this the best checkpoint; min validation loss
|
196 |
+
checkpoint_path: path to save checkpoint
|
197 |
+
best_model_path: path to save best model
|
198 |
+
"""
|
199 |
+
f_path = checkpoint_path
|
200 |
+
torch.save(state, f_path)
|
201 |
+
if is_best:
|
202 |
+
best_fpath = best_model_path
|
203 |
+
shutil.copyfile(f_path, best_fpath)
|
204 |
+
|
205 |
+
ckpt_path = "model.pt"
|
206 |
+
best_model_path = "best_model.pt"
|
207 |
+
|
208 |
+
trained_model = train_model(EPOCHS,
|
209 |
+
train_data_loader,
|
210 |
+
val_data_loader,
|
211 |
+
model,
|
212 |
+
optimizer,
|
213 |
+
ckpt_path,
|
214 |
+
best_model_path)
|