Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
from langchain.llms import HuggingFacePipeline | |
from langchain import PromptTemplate, LLMChain | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from huggingface_hub import login | |
# API Key de Hugging Face | |
huggingface_token = st.secrets["FIREWORKS"] | |
# Autenticar | |
#login(api_key) | |
# Configurar modelo Llama 3.1 | |
model_id = "meta-llama/Llama-3.2-1B" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, tokenizer = hugginface_token) | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",token=huggingface_token, torch_dtype=torch.float16) | |
# Crear pipeline con Fireworks | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1024) | |
llm_pipeline = HuggingFacePipeline(pipeline=pipe) | |
# Interfaz de Streamlit | |
st.title("Cosine Similarity Calculation with Fireworks, LangChain, and Llama 3.1") | |
# Subir archivo CSV | |
uploaded_file = st.file_uploader("Sube un archivo CSV con la columna 'job_title':", type=["csv"]) | |
if uploaded_file is not None: | |
# Cargar el CSV en un DataFrame | |
df = pd.read_csv(uploaded_file) | |
if 'job_title' in df.columns: | |
query = 'aspiring human resources specialist' | |
job_titles = df['job_title'].tolist() | |
# Definir el prompt para usar Fireworks para c谩lculo de similitud de coseno | |
# Crear el prompt mejorado para Fireworks | |
prompt_template = PromptTemplate( | |
template=( | |
"You are an AI model with access to external embeddings services. Your task is to calculate the cosine similarity " | |
"between a given query and a list of job titles using embeddings obtained from an external service. " | |
"Follow these steps to complete the task:\n\n" | |
"1. Retrieve the embeddings for the query: '{query}' from the external embeddings service.\n" | |
"2. For each job title in the list below, retrieve the corresponding embeddings from the same external service.\n" | |
"3. Calculate the cosine similarity between the query embeddings and the embeddings of each job title.\n" | |
"4. Return the results in the following format:\n" | |
" - Job Title: [Job Title], Score: [Cosine Similarity Score]\n" | |
" - Job Title: [Job Title], Score: [Cosine Similarity Score]\n" | |
" ...\n\n" | |
"The list of job titles is:\n{job_titles}\n\n" | |
"Remember to access the embeddings service directly and ensure that the cosine similarity scores are calculated accurately based on the semantic similarity between the embeddings." | |
), | |
input_variables=["query", "job_titles"] | |
) | |
# Crear el LLMChain para manejar la interacci贸n con Fireworks | |
llm_chain = LLMChain( | |
llm=llm_pipeline, | |
prompt=prompt_template | |
) | |
# Ejecutar la generaci贸n con el LLM | |
if st.button("Calcular Similitud de Coseno"): | |
with st.spinner("Calculando similitudes con Fireworks y Llama 3.1..."): | |
try: | |
result = llm_chain.run({"query": query, "job_titles": job_titles}) | |
st.write("Respuesta del modelo:") | |
st.write(result) | |
# Simular la asignaci贸n de puntajes en la columna 'Score' (basado en la respuesta del modelo) | |
df['Score'] = [0.95] * len(df) # Simulaci贸n para la demostraci贸n | |
# Mostrar el dataframe actualizado | |
st.write("DataFrame con los puntajes de similitud:") | |
st.write(df) | |
except Exception as e: | |
st.error(f"Error durante la generaci贸n: {e}") | |
else: | |
st.error("La columna 'job_title' no se encuentra en el archivo CSV.") | |