JaphetHernandez commited on
Commit
70ed6f0
1 Parent(s): a77f2b3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -1
app.py CHANGED
@@ -15,8 +15,31 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
15
  # Asignar el eos_token como pad_token
16
  tokenizer.pad_token = tokenizer.eos_token
17
 
 
 
 
 
 
 
 
 
18
  # Texto de entrada para la generación
19
- input_text = "Tu texto aquí"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
21
 
22
  # Establecer el id del token de padding
 
15
  # Asignar el eos_token como pad_token
16
  tokenizer.pad_token = tokenizer.eos_token
17
 
18
+ # Upload CSV file
19
+ uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
20
+ #print("Query: ", query)
21
+
22
+ df = pd.DataFrame(uploaded_file)
23
+ job_titles = df['job_title'].tolist()
24
+ query="aspiring human resources specialist"
25
+
26
  # Texto de entrada para la generación
27
+ input_text = (
28
+ f"You are an AI assistant. You have a list of job titles and a search query.\n"
29
+ f"Your task is to rank these job titles by their semantic similarity to the given query. "
30
+ f"Please provide the ranking from most relevant to least relevant. "
31
+ f"Do not calculate cosine similarity; instead, focus on understanding the semantic relevance of each job title to the query.\n"
32
+ f"\n"
33
+ f"Format your response like this:\n"
34
+ f"1. [Most Relevant Job Title]\n"
35
+ f"2. [Second Most Relevant Job Title]\n"
36
+ f"...\n"
37
+ f"N. [Least Relevant Job Title]\n"
38
+ f"\n"
39
+ f"Query: \"{query}\"\n"
40
+ f"Job Titles: {job_titles}\n"
41
+ )
42
+
43
  inputs = tokenizer(input_text, return_tensors="pt", padding=True)
44
 
45
  # Establecer el id del token de padding