JavierGon12 commited on
Commit
cd03817
1 Parent(s): e77b808

Remove unnecessary libraries and clean code a bit

Browse files
app.py CHANGED
@@ -1,12 +1,6 @@
1
- # Install libraries
2
-
3
  import streamlit as st
4
  from PIL import Image
5
- import streamlit as st
6
  from transformers import pipeline
7
- import pandas as pd
8
- import plotly.express as px
9
- import matplotlib.pyplot as plt
10
  from pathlib import Path
11
  import base64
12
  from st_pages import Page, add_page_title, show_pages
 
 
 
1
  import streamlit as st
2
  from PIL import Image
 
3
  from transformers import pipeline
 
 
 
4
  from pathlib import Path
5
  import base64
6
  from st_pages import Page, add_page_title, show_pages
pages/Question Answering.py CHANGED
@@ -1,7 +1,6 @@
1
  import re
2
  import streamlit as st
3
  from transformers import DonutProcessor, VisionEncoderDecoderModel
4
- from datasets import load_dataset
5
  import torch
6
  import os
7
  from PIL import Image
@@ -9,6 +8,7 @@ import PyPDF2
9
  from pypdf.errors import PdfReadError
10
  from pypdf import PdfReader
11
  import pypdfium2 as pdfium
 
12
  processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
13
  model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
14
 
 
1
  import re
2
  import streamlit as st
3
  from transformers import DonutProcessor, VisionEncoderDecoderModel
 
4
  import torch
5
  import os
6
  from PIL import Image
 
8
  from pypdf.errors import PdfReadError
9
  from pypdf import PdfReader
10
  import pypdfium2 as pdfium
11
+
12
  processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
13
  model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
14
 
pages/Speech Recognition.py CHANGED
@@ -1,8 +1,5 @@
1
- from transformers import BartForConditionalGeneration, BartTokenizer
2
  import streamlit as st
3
  import torch
4
- from transformers import AutoProcessor, WhisperForConditionalGeneration
5
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
  import torchaudio
7
  from transformers import pipeline
8
  from streamlit_mic_recorder import mic_recorder,speech_to_text
 
 
1
  import streamlit as st
2
  import torch
 
 
3
  import torchaudio
4
  from transformers import pipeline
5
  from streamlit_mic_recorder import mic_recorder,speech_to_text
pages/Summarization.py CHANGED
@@ -1,7 +1,6 @@
1
  from transformers import BartForConditionalGeneration, BartTokenizer
2
  import streamlit as st
3
  import torch
4
- from transformers import AutoProcessor, WhisperForConditionalGeneration
5
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
6
  import torchaudio
7
  from transformers import pipeline
 
1
  from transformers import BartForConditionalGeneration, BartTokenizer
2
  import streamlit as st
3
  import torch
 
4
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
  import torchaudio
6
  from transformers import pipeline
pages/Text Classification.py CHANGED
@@ -1,6 +1,5 @@
1
  import re
2
  from transformers import DonutProcessor, VisionEncoderDecoderModel
3
- from datasets import load_dataset
4
  import torch
5
  import streamlit as st
6
  from PIL import Image
 
1
  import re
2
  from transformers import DonutProcessor, VisionEncoderDecoderModel
 
3
  import torch
4
  import streamlit as st
5
  from PIL import Image
pages/Text Generation.py CHANGED
@@ -1,19 +1,10 @@
1
  import streamlit as st
2
  from PIL import Image
3
- import streamlit as st
4
- from transformers import pipeline
5
- import pandas as pd
6
- import plotly.express as px
7
- import matplotlib.pyplot as plt
8
- from pathlib import Path
9
  import base64
10
- from st_pages import Page, add_page_title, show_pages
11
- from streamlit_extras.badges import badge
12
  import transformers
13
 
14
 
15
 
16
-
17
  model_name = 'Intel/neural-chat-7b-v3-1'
18
  model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
19
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
 
1
  import streamlit as st
2
  from PIL import Image
 
 
 
 
 
 
3
  import base64
 
 
4
  import transformers
5
 
6
 
7
 
 
8
  model_name = 'Intel/neural-chat-7b-v3-1'
9
  model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
10
  tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)