import re from transformers import DonutProcessor, VisionEncoderDecoderModel import torch import streamlit as st from PIL import Image import PyPDF2 from pypdf.errors import PdfReadError from pypdf import PdfReader import pypdfium2 as pdfium document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"]) model_option = st.selectbox("Select the output of the model:",["Classification","Extract Info"]) if model_option == "Classification": processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") device = "cpu" model.to(device) # load document image if document == None: st.write("Please upload the document in the box above") else: try: PdfReader(document) pdf = pdfium.PdfDocument(document) page = pdf.get_page(0) pil_image = page.render(scale = 300/72).to_pil() task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(pil_image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token st.image(pil_image,"Document uploaded") st.write(processor.token2json(sequence)) except PdfReadError: document = Image.open(document) task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(document, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token st.image(document,"Document uploaded") st.write(processor.token2json(sequence)) elif model_option == "Extract Info": processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") device = "cpu" model.to(device) # load document image if document == None: st.write("Please upload the document in the box above") else: try: PdfReader(document) pdf = pdfium.PdfDocument(document) page = pdf.get_page(0) pil_image = page.render(scale = 300/72).to_pil() task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(pil_image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token st.image(pil_image,"Document uploaded") st.write(processor.token2json(sequence)) except PdfReadError: document = Image.open(document) task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pixel_values = processor(document, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token st.image(document,"Document uploaded") st.write(processor.token2json(sequence))