# import streamlit as st # from PIL import Image # import base64 # import transformers # model_name = 'Intel/neural-chat-7b-v3-1' # model = transformers.AutoModelForCausalLM.from_pretrained(model_name) # tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) # def generate_response(system_input, user_input): # # Format the input using the provided template # prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n" # # Tokenize and encode the prompt # inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False) # # Generate a response # outputs = model.generate(inputs, max_length=1000, num_return_sequences=1) # response = tokenizer.decode(outputs[0], skip_special_tokens=True) # # Extract only the assistant's response # return response.split("### Assistant:\n")[-1] # # Example usage # system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability" # prompt = st.text_input(str("Insert here you prompt?")) # response = generate_response(system_input, prompt) # st.write(response)