Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,636 Bytes
97977f6 d825944 97977f6 d825944 ef4ab25 d825944 5cd7566 d825944 a782412 5cd7566 d825944 59a3619 5cd7566 59a3619 d825944 0d94fcc d825944 fd67e37 d825944 59a3619 d825944 f7758a0 d825944 f7758a0 d825944 f7758a0 2b9d470 59a3619 99fe16f 59a3619 d825944 f7758a0 d825944 f7758a0 5cd7566 f7758a0 d825944 59a3619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import os
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Include your Hugging Face access token
hf_token = os.getenv("waffles")
# Load the diffusion pipeline with the access token
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=hf_token).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_INFERENCE_STEPS = 4
@spaces.GPU(duration=90)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_images=1, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
images = []
for _ in range(num_images):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=DEFAULT_INFERENCE_STEPS,
generator=generator,
guidance_scale=0 # Fixed at 0
).images[0]
images.append(image)
return images, seed
examples = [
"a white husky knocking everything down in a living room",
"a tuxedo cat with a waffle in her mouth",
"an anime Chiweenie Dog wearing a hoodie",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=5,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=4,
step=1,
value=1,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_images],
outputs=[result, seed]
)
demo.launch() |