File size: 3,636 Bytes
97977f6
d825944
 
 
 
 
 
 
97977f6
d825944
 
 
 
ef4ab25
d825944
 
 
 
 
 
5cd7566
d825944
a782412
5cd7566
d825944
 
 
59a3619
 
 
 
 
 
 
5cd7566
59a3619
 
 
 
 
 
d825944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d94fcc
 
 
d825944
 
 
 
 
 
 
fd67e37
d825944
 
 
 
 
 
59a3619
d825944
f7758a0
 
 
 
 
 
 
 
 
 
 
d825944
f7758a0
 
 
 
 
 
 
d825944
f7758a0
 
 
 
 
 
 
2b9d470
59a3619
 
 
99fe16f
59a3619
 
 
 
d825944
f7758a0
 
 
 
d825944
 
 
 
 
f7758a0
5cd7566
f7758a0
d825944
 
59a3619
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
import random
import spaces
import torch
import os
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Include your Hugging Face access token
hf_token = os.getenv("waffles")

# Load the diffusion pipeline with the access token
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=hf_token).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_INFERENCE_STEPS = 4

@spaces.GPU(duration=90)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_images=1, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    images = []
    for _ in range(num_images):
        image = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=DEFAULT_INFERENCE_STEPS, 
            generator=generator,
            guidance_scale=0  # Fixed at 0
        ).images[0]
        images.append(image)
    
    return images, seed
 
examples = [
    "a white husky knocking everything down in a living room",
    "a tuxedo cat with a waffle in her mouth",
    "an anime Chiweenie Dog wearing a hoodie",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=5,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Gallery(label="Result", show_label=False)
        
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        
        with gr.Row():
            
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            
        num_images = gr.Slider(
            label="Number of images",
            minimum=1,
            maximum=4,
            step=1,
            value=1,
        )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_images],
        outputs=[result, seed]
    )

demo.launch()