import gradio as gr import numpy as np import random import spaces import torch import os from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Include your Hugging Face access token hf_token = os.getenv("waffles") # Load the diffusion pipeline with the access token pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=hf_token).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 DEFAULT_INFERENCE_STEPS = 4 @spaces.GPU(duration=90) def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_images=1, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) images = [] for _ in range(num_images): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=DEFAULT_INFERENCE_STEPS, generator=generator, guidance_scale=0 # Fixed at 0 ).images[0] images.append(image) return images, seed examples = [ "a white husky knocking everything down in a living room", "a tuxedo cat with a waffle in her mouth", "an anime Chiweenie Dog wearing a hoodie", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [schnell] 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=5, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", show_label=False) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) num_images = gr.Slider( label="Number of images", minimum=1, maximum=4, step=1, value=1, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_images], outputs=[result, seed] ) demo.launch()