Jennnnnny commited on
Commit
1cf385b
1 Parent(s): 6bfc49f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ '''
3
+ saved_models文件夹包含两个文件:
4
+ 1).在原有bert-base-chinese基础上fine-tune的pytorch_model.bin
5
+ 2).配置文件config.json,和原有bert-base-chinese的配置文件一样
6
+ '''
7
+
8
+ import sys
9
+ sys.path.append(r'./4-5.Bert-seq2seq/')
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+ from model import BertForSeq2Seq
14
+ from tokenizer import Tokenizer
15
+
16
+ def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
17
+ """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
18
+ Args:
19
+ logits: logits distribution shape (vocabulary size)
20
+ top_k > 0: keep only top k tokens with highest probability (top-k filtering).
21
+ top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
22
+ Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
23
+ From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
24
+ """
25
+ assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
26
+ top_k = min(top_k, logits.size(-1)) # Safety check
27
+ if top_k > 0:
28
+ # Remove all tokens with a probability less than the last token of the top-k
29
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
30
+ logits[indices_to_remove] = filter_value
31
+
32
+ if top_p > 0.0:
33
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
34
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
35
+
36
+ # Remove tokens with cumulative probability above the threshold
37
+ sorted_indices_to_remove = cumulative_probs > top_p
38
+ # Shift the indices to the right to keep also the first token above the threshold
39
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
40
+ sorted_indices_to_remove[..., 0] = 0
41
+
42
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
43
+ logits[indices_to_remove] = filter_value
44
+ return logits
45
+
46
+ def sample_generate(text, model_path, out_max_length=40, top_k=30, top_p=0.0, max_length=512):
47
+ device = "cuda" if torch.cuda.is_available() else 'cpu'
48
+
49
+ model = BertForSeq2Seq.from_pretrained(model_path)
50
+ model.to(device)
51
+ model.eval()
52
+
53
+ input_max_length = max_length - out_max_length
54
+ input_ids, token_type_ids, token_type_ids_for_mask, labels = Tokenizer.encode(text, max_length=input_max_length)
55
+
56
+ input_ids = torch.tensor(input_ids, device=device, dtype=torch.long).view(1, -1)
57
+ token_type_ids = torch.tensor(token_type_ids, device=device, dtype=torch.long).view(1, -1)
58
+ token_type_ids_for_mask = torch.tensor(token_type_ids_for_mask, device=device, dtype=torch.long).view(1, -1)
59
+ #print(input_ids, token_type_ids, token_type_ids_for_mask)
60
+ output_ids = []
61
+
62
+ with torch.no_grad():
63
+ for step in range(out_max_length):
64
+ scores = model(input_ids, token_type_ids, token_type_ids_for_mask)
65
+ logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0)
66
+ logit_score[Tokenizer.unk_id] = -float('Inf')
67
+
68
+ # 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率
69
+ for id_ in set(output_ids):
70
+ logit_score[id_] /= 1.5
71
+
72
+ filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p)
73
+ next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
74
+ if Tokenizer.sep_id == next_token.item():
75
+ break
76
+ output_ids.append(next_token.item())
77
+ input_ids = torch.cat((input_ids, next_token.long().unsqueeze(0)), dim=1)
78
+ token_type_ids = torch.cat([token_type_ids, torch.ones((1, 1), device=device, dtype=torch.long)], dim=1)
79
+ token_type_ids_for_mask = torch.cat([token_type_ids_for_mask, torch.zeros((1, 1), device=device, dtype=torch.long)], dim=1)
80
+ #print(input_ids, token_type_ids, token_type_ids_for_mask)
81
+
82
+
83
+ return Tokenizer.decode(np.array(output_ids))
84
+
85
+ import gradio as gr
86
+ def greet(a):
87
+ summary = sample_generate(text=a,model_path='/hy-tmp/4-5.Bert-seq2seq/saved_models',top_k=5,top_p=0.95)
88
+ return summary
89
+ demo=gr.Interface(fn=greet,inputs="text",outputs="text")
90
+ demo.launch(share=True)
91
+
92
+
93
+
94
+
95
+ '''while 1:
96
+ a=input('请输入需要提取的新闻段落')
97
+ summary = sample_generate(text=a,model_path='/hy-tmp/4-5.Bert-seq2seq/saved_models',top_k=5,top_p=0.95)
98
+ print(summary)
99
+
100
+
101
+
102
+