# -*- coding: utf-8 -*- ''' saved_models文件夹包含两个文件: 1).在原有bert-base-chinese基础上fine-tune的pytorch_model.bin 2).配置文件config.json,和原有bert-base-chinese的配置文件一样 ''' import sys sys.path.append(r'./4-5.Bert-seq2seq/') import torch import torch.nn.functional as F import numpy as np from model import BertForSeq2Seq from tokenizer import Tokenizer def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k > 0: keep only top k tokens with highest probability (top-k filtering). top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits def sample_generate(text, model_path, out_max_length=40, top_k=30, top_p=0.0, max_length=512): device = "cuda" if torch.cuda.is_available() else 'cpu' model = BertForSeq2Seq.from_pretrained(model_path) model.to(device) model.eval() input_max_length = max_length - out_max_length input_ids, token_type_ids, token_type_ids_for_mask, labels = Tokenizer.encode(text, max_length=input_max_length) input_ids = torch.tensor(input_ids, device=device, dtype=torch.long).view(1, -1) token_type_ids = torch.tensor(token_type_ids, device=device, dtype=torch.long).view(1, -1) token_type_ids_for_mask = torch.tensor(token_type_ids_for_mask, device=device, dtype=torch.long).view(1, -1) #print(input_ids, token_type_ids, token_type_ids_for_mask) output_ids = [] with torch.no_grad(): for step in range(out_max_length): scores = model(input_ids, token_type_ids, token_type_ids_for_mask) logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0) logit_score[Tokenizer.unk_id] = -float('Inf') # 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率 for id_ in set(output_ids): logit_score[id_] /= 1.5 filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p) next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) if Tokenizer.sep_id == next_token.item(): break output_ids.append(next_token.item()) input_ids = torch.cat((input_ids, next_token.long().unsqueeze(0)), dim=1) token_type_ids = torch.cat([token_type_ids, torch.ones((1, 1), device=device, dtype=torch.long)], dim=1) token_type_ids_for_mask = torch.cat([token_type_ids_for_mask, torch.zeros((1, 1), device=device, dtype=torch.long)], dim=1) #print(input_ids, token_type_ids, token_type_ids_for_mask) return Tokenizer.decode(np.array(output_ids)) import gradio as gr def greet(a): summary = sample_generate(text=a,model_path='/hy-tmp/4-5.Bert-seq2seq/saved_models',top_k=5,top_p=0.95) return summary demo=gr.Interface(fn=greet,inputs="text",outputs="text") demo.launch(share=True)