File size: 2,867 Bytes
a52ecf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from collections import OrderedDict
from pathlib import Path
from typing import Any

import gradio as gr


def _deserialize_components_fix(
        self,
        data_dir: Path,
        flag_data: list[Any],
        flag_option: str = "",
        username: str = "",
) -> tuple[dict[Any, Any], list[Any]]:
    """Deserialize components and return the corresponding row for the flagged sample.

    Images/audio are saved to disk as individual files.
    """
    # Components that can have a preview on dataset repos
    file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}

    # Generate the row corresponding to the flagged sample
    features = OrderedDict()
    row = []
    for component, sample in zip(self.components, flag_data):
        # Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
        label = component.label or ""
        save_dir = data_dir / gr.flagging.client_utils.strip_invalid_filename_characters(label)
        save_dir.mkdir(exist_ok=True, parents=True)
        deserialized = component.flag(sample, save_dir)

        # Add deserialized object to row
        features[label] = {"dtype": "string", "_type": "Value"}
        try:
            assert Path(deserialized).exists()
            row.append(str(Path(deserialized).relative_to(self.dataset_dir)))
        except (AssertionError, TypeError, ValueError, OSError):
            deserialized = "" if deserialized is None else str(deserialized)
            row.append(deserialized)

        # If component is eligible for a preview, add the URL of the file
        # Be mindful that images and audio can be None
        if isinstance(component, tuple(file_preview_types)):  # type: ignore
            for _component, _type in file_preview_types.items():
                if isinstance(component, _component):
                    features[label + " file"] = {"_type": _type}
                    break
            if deserialized:
                path_in_repo = str(  # returned filepath is absolute, we want it relative to compute URL
                    Path(deserialized).relative_to(self.dataset_dir)
                ).replace("\\", "/")
                row.append(
                    gr.flagging.huggingface_hub.hf_hub_url(
                        repo_id=self.dataset_id,
                        filename=path_in_repo,
                        repo_type="dataset",
                    )
                )
            else:
                row.append("")
    features["flag"] = {"dtype": "string", "_type": "Value"}
    features["username"] = {"dtype": "string", "_type": "Value"}
    row.append(flag_option)
    row.append(username)
    return features, row


def get_dataset_saver(*args, **kwargs):
    saver = gr.HuggingFaceDatasetSaver(*args, **kwargs)
    saver._deserialize_components = _deserialize_components_fix
    return saver