|
import os |
|
import re |
|
import zipfile |
|
import torch |
|
import gradio as gr |
|
|
|
print('hello', gr.__version__) |
|
|
|
import numpy as np |
|
import time |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DiffusionPipeline |
|
from tqdm import tqdm |
|
from PIL import Image |
|
from PIL import Image, ImageDraw, ImageFont |
|
import random |
|
import copy |
|
|
|
import string |
|
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' |
|
'''alphabet |
|
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ |
|
''' |
|
|
|
if not os.path.exists('images2'): |
|
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images2.zip') |
|
with zipfile.ZipFile('images2.zip', 'r') as zip_ref: |
|
zip_ref.extractall('.') |
|
|
|
|
|
os.system('ls') |
|
|
|
|
|
text_encoder = CLIPTextModel.from_pretrained( |
|
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="text_encoder" |
|
).cuda().half() |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
'botp/stable-diffusion-v1-5', subfolder="tokenizer" |
|
) |
|
|
|
|
|
print('***************') |
|
print(len(tokenizer)) |
|
for i in range(520): |
|
tokenizer.add_tokens(['l' + str(i) ]) |
|
tokenizer.add_tokens(['t' + str(i) ]) |
|
tokenizer.add_tokens(['r' + str(i) ]) |
|
tokenizer.add_tokens(['b' + str(i) ]) |
|
for c in alphabet: |
|
tokenizer.add_tokens([f'[{c}]']) |
|
print(len(tokenizer)) |
|
print('***************') |
|
|
|
vae = AutoencoderKL.from_pretrained('botp/stable-diffusion-v1-5', subfolder="vae").half().cuda() |
|
unet = UNet2DConditionModel.from_pretrained( |
|
'JingyeChen22/textdiffuser2-full-ft-inpainting', subfolder="unet" |
|
).half().cuda() |
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
global_dict = {} |
|
|
|
|
|
|
|
font = ImageFont.truetype("./Arial.ttf", 20) |
|
|
|
def skip_fun(i, t, guest_id): |
|
global_dict[guest_id]['state'] = 0 |
|
|
|
|
|
|
|
|
|
def exe_undo(i, orig_i, t, guest_id): |
|
|
|
global_dict[guest_id]['stack'] = [] |
|
global_dict[guest_id]['state'] = 0 |
|
|
|
return copy.deepcopy(orig_i) |
|
|
|
|
|
def exe_redo(i, orig_i, t, guest_id): |
|
|
|
print('redo ',orig_i) |
|
|
|
if type(orig_i) == str: |
|
orig_i = Image.open(orig_i) |
|
|
|
|
|
|
|
global_dict[guest_id]['state'] = 0 |
|
|
|
if len(global_dict[guest_id]['stack']) > 0: |
|
global_dict[guest_id]['stack'].pop() |
|
|
|
image = copy.deepcopy(orig_i) |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
for items in global_dict[guest_id]['stack']: |
|
|
|
text_position, t = items |
|
if len(text_position) == 2: |
|
x, y = text_position |
|
text_color = (255, 0, 0) |
|
draw.text((x+2, y), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x-r, y-r) |
|
rightDownPoint = (x+r, y+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
elif len(text_position) == 4: |
|
x0, y0, x1, y1 = text_position |
|
text_color = (255, 0, 0) |
|
draw.text((x0+2, y0), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x0-r, y0-r) |
|
rightDownPoint = (x0+r, y0+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) |
|
|
|
print('stack', global_dict[guest_id]['stack']) |
|
return image |
|
|
|
def get_pixels(i, orig_i, radio, t, guest_id, evt: gr.SelectData): |
|
|
|
|
|
|
|
|
|
width, height = Image.open(i).size |
|
|
|
|
|
if guest_id == '-1': |
|
seed = str(int(time.time())) |
|
global_dict[str(seed)] = { |
|
'state': 0, |
|
'stack': [], |
|
'image_id': [list(Image.open(i).resize((512,512)).getdata())] |
|
} |
|
guest_id = str(seed) |
|
else: |
|
seed = guest_id |
|
|
|
if type(i) == str: |
|
i = Image.open(i) |
|
i = i.resize((512,512)) |
|
|
|
images = global_dict[str(seed)]['image_id'] |
|
flag = False |
|
for image in images: |
|
if image == list(i.getdata()): |
|
print('find it') |
|
flag = True |
|
break |
|
|
|
if not flag: |
|
global_dict[str(seed)]['image_id'] = [list(i.getdata())] |
|
global_dict[str(seed)]['stack'] = [] |
|
global_dict[str(seed)]['state'] = 0 |
|
orig_i = i |
|
else: |
|
|
|
if orig_i is not None: |
|
orig_i = Image.open(orig_i) |
|
orig_i = orig_i.resize((512,512)) |
|
else: |
|
orig_i = i |
|
global_dict[guest_id]['stack'] = [] |
|
global_dict[guest_id]['state'] = 0 |
|
|
|
text_position = evt.index |
|
|
|
print('hello ', text_position) |
|
|
|
if radio == 'Two Points': |
|
|
|
if global_dict[guest_id]['state'] == 0: |
|
global_dict[guest_id]['stack'].append( |
|
(text_position, t) |
|
) |
|
print(text_position, global_dict[guest_id]['stack']) |
|
global_dict[guest_id]['state'] = 1 |
|
else: |
|
|
|
(_, t) = global_dict[guest_id]['stack'].pop() |
|
x, y = _ |
|
global_dict[guest_id]['stack'].append( |
|
((x,y,text_position[0],text_position[1]), t) |
|
) |
|
global_dict[guest_id]['state'] = 0 |
|
|
|
image = copy.deepcopy(orig_i) |
|
draw = ImageDraw.Draw(image) |
|
|
|
for items in global_dict[guest_id]['stack']: |
|
text_position, t = items |
|
if len(text_position) == 2: |
|
x, y = text_position |
|
|
|
x = int(512 * x / width) |
|
y = int(512 * y / height) |
|
|
|
text_color = (255, 0, 0) |
|
draw.text((x+2, y), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x-r, y-r) |
|
rightDownPoint = (x+r, y+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
elif len(text_position) == 4: |
|
x0, y0, x1, y1 = text_position |
|
|
|
x0 = int(512 * x0 / width) |
|
x1 = int(512 * x1 / width) |
|
y0 = int(512 * y0 / height) |
|
y1 = int(512 * y1 / height) |
|
|
|
text_color = (255, 0, 0) |
|
draw.text((x0+2, y0), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x0-r, y0-r) |
|
rightDownPoint = (x0+r, y0+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) |
|
|
|
elif radio == 'Four Points': |
|
|
|
if global_dict[guest_id]['state'] == 0: |
|
global_dict[guest_id]['stack'].append( |
|
(text_position, t) |
|
) |
|
print(text_position, global_dict[guest_id]['stack']) |
|
global_dict[guest_id]['state'] = 1 |
|
elif global_dict[guest_id]['state'] == 1: |
|
(_, t) = global_dict[guest_id]['stack'].pop() |
|
x, y = _ |
|
global_dict[guest_id]['stack'].append( |
|
((x,y,text_position[0],text_position[1]), t) |
|
) |
|
global_dict[guest_id]['state'] = 2 |
|
elif global_dict[guest_id]['state'] == 2: |
|
(_, t) = global_dict[guest_id]['stack'].pop() |
|
x0, y0, x1, y1 = _ |
|
global_dict[guest_id]['stack'].append( |
|
((x0, y0, x1, y1,text_position[0],text_position[1]), t) |
|
) |
|
global_dict[guest_id]['state'] = 3 |
|
elif global_dict[guest_id]['state'] == 3: |
|
(_, t) = global_dict[guest_id]['stack'].pop() |
|
x0, y0, x1, y1, x2, y2 = _ |
|
global_dict[guest_id]['stack'].append( |
|
((x0, y0, x1, y1, x2, y2,text_position[0],text_position[1]), t) |
|
) |
|
global_dict[guest_id]['state'] = 0 |
|
|
|
image = copy.deepcopy(orig_i) |
|
draw = ImageDraw.Draw(image) |
|
|
|
for items in global_dict[guest_id]['stack']: |
|
text_position, t = items |
|
if len(text_position) == 2: |
|
x, y = text_position |
|
|
|
x = int(512 * x / width) |
|
y = int(512 * y / height) |
|
|
|
text_color = (255, 0, 0) |
|
draw.text((x+2, y), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x-r, y-r) |
|
rightDownPoint = (x+r, y+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
elif len(text_position) == 4: |
|
x0, y0, x1, y1 = text_position |
|
text_color = (255, 0, 0) |
|
draw.text((x0+2, y0), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x0-r, y0-r) |
|
rightDownPoint = (x0+r, y0+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) ) |
|
elif len(text_position) == 6: |
|
x0, y0, x1, y1, x2, y2 = text_position |
|
text_color = (255, 0, 0) |
|
draw.text((x0+2, y0), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x0-r, y0-r) |
|
rightDownPoint = (x0+r, y0+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) ) |
|
draw.line(((x1,y1),(x2,y2)), fill=(255, 0, 0) ) |
|
elif len(text_position) == 8: |
|
x0, y0, x1, y1, x2, y2, x3, y3 = text_position |
|
text_color = (255, 0, 0) |
|
draw.text((x0+2, y0), t, font=font, fill=text_color) |
|
r = 4 |
|
leftUpPoint = (x0-r, y0-r) |
|
rightDownPoint = (x0+r, y0+r) |
|
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') |
|
draw.line(((x0,y0),(x1,y1)), fill=(255, 0, 0) ) |
|
draw.line(((x1,y1),(x2,y2)), fill=(255, 0, 0) ) |
|
draw.line(((x2,y2),(x3,y3)), fill=(255, 0, 0) ) |
|
draw.line(((x3,y3),(x0,y0)), fill=(255, 0, 0) ) |
|
|
|
|
|
print('stack', global_dict[guest_id]['stack']) |
|
|
|
global_dict[str(seed)]['image_id'].append(list(image.getdata())) |
|
|
|
return image, orig_i, seed |
|
|
|
|
|
font_layout = ImageFont.truetype('./Arial.ttf', 16) |
|
|
|
def get_layout_image(ocrs): |
|
|
|
blank = Image.new('RGB', (256,256), (0,0,0)) |
|
draw = ImageDraw.ImageDraw(blank) |
|
|
|
for line in ocrs.split('\n'): |
|
line = line.strip() |
|
|
|
if len(line) == 0: |
|
break |
|
|
|
pred = ' '.join(line.split()[:-1]) |
|
box = line.split()[-1] |
|
l, t, r, b = [int(i)*2 for i in box.split(',')] |
|
draw.rectangle([(l, t), (r, b)], outline ="red") |
|
draw.text((l, t), pred, font=font_layout) |
|
|
|
return blank |
|
|
|
|
|
def to_tensor(image): |
|
if isinstance(image, Image.Image): |
|
image = np.array(image) |
|
elif not isinstance(image, np.ndarray): |
|
raise TypeError("Error") |
|
|
|
image = image.astype(np.float32) / 255.0 |
|
image = np.transpose(image, (2, 0, 1)) |
|
tensor = torch.from_numpy(image) |
|
|
|
return tensor |
|
|
|
def test_fn(x,y): |
|
print('hello') |
|
|
|
def text_to_image(guest_id, i, orig_i, prompt,keywords,positive_prompt,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural): |
|
|
|
|
|
|
|
|
|
print(f'[info] Prompt: {prompt} | Keywords: {keywords} | Radio: {radio} | Steps: {slider_step} | Guidance: {slider_guidance} | Natural: {slider_natural}') |
|
|
|
|
|
|
|
|
|
if len(positive_prompt.strip()) != 0: |
|
prompt += positive_prompt |
|
|
|
with torch.no_grad(): |
|
time1 = time.time() |
|
user_prompt = prompt |
|
|
|
if slider_natural: |
|
user_prompt = f'{user_prompt}' |
|
composed_prompt = user_prompt |
|
prompt = tokenizer.encode(user_prompt) |
|
layout_image = None |
|
else: |
|
if guest_id not in global_dict or len(global_dict[guest_id]['stack']) == 0: |
|
|
|
if len(keywords.strip()) == 0: |
|
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}' |
|
else: |
|
keywords = keywords.split('/') |
|
keywords = [i.strip() for i in keywords] |
|
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords)}' |
|
|
|
msg = template |
|
conv = get_conversation_template(m1_model_path) |
|
conv.append_message(conv.roles[0], msg) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
inputs = m1_tokenizer([prompt], return_token_type_ids=False) |
|
inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()} |
|
output_ids = m1_model.generate( |
|
**inputs, |
|
do_sample=True, |
|
temperature=slider_temperature, |
|
repetition_penalty=1.0, |
|
max_new_tokens=512, |
|
) |
|
|
|
if m1_model.config.is_encoder_decoder: |
|
output_ids = output_ids[0] |
|
else: |
|
output_ids = output_ids[0][len(inputs["input_ids"][0]) :] |
|
outputs = m1_tokenizer.decode( |
|
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False |
|
) |
|
print(f"[{conv.roles[0]}]\n{msg}") |
|
print(f"[{conv.roles[1]}]\n{outputs}") |
|
layout_image = get_layout_image(outputs) |
|
|
|
ocrs = outputs.split('\n') |
|
time2 = time.time() |
|
print(time2-time1) |
|
|
|
|
|
current_ocr = ocrs |
|
|
|
|
|
ocr_ids = [] |
|
print('user_prompt', user_prompt) |
|
print('current_ocr', current_ocr) |
|
|
|
|
|
for ocr in current_ocr: |
|
ocr = ocr.strip() |
|
|
|
if len(ocr) == 0 or '###' in ocr or '.com' in ocr: |
|
continue |
|
|
|
items = ocr.split() |
|
pred = ' '.join(items[:-1]) |
|
box = items[-1] |
|
|
|
l,t,r,b = box.split(',') |
|
l,t,r,b = int(l), int(t), int(r), int(b) |
|
ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)]) |
|
|
|
char_list = list(pred) |
|
char_list = [f'[{i}]' for i in char_list] |
|
ocr_ids.extend(char_list) |
|
ocr_ids.append(tokenizer.eos_token_id) |
|
|
|
caption_ids = tokenizer( |
|
user_prompt, truncation=True, return_tensors="pt" |
|
).input_ids[0].tolist() |
|
|
|
try: |
|
ocr_ids = tokenizer.encode(ocr_ids) |
|
prompt = caption_ids + ocr_ids |
|
except: |
|
prompt = caption_ids |
|
|
|
user_prompt = tokenizer.decode(prompt) |
|
composed_prompt = tokenizer.decode(prompt) |
|
|
|
else: |
|
user_prompt += ' <|endoftext|><|startoftext|>' |
|
layout_image = None |
|
|
|
image_mask = Image.new('L', (512,512), 0) |
|
draw = ImageDraw.Draw(image_mask) |
|
|
|
for items in global_dict[guest_id]['stack']: |
|
position, text = items |
|
|
|
|
|
|
|
|
|
if len(position) == 2: |
|
x, y = position |
|
x = x // 4 |
|
y = y // 4 |
|
text_str = ' '.join([f'[{c}]' for c in list(text)]) |
|
user_prompt += f' l{x} t{y} {text_str} <|endoftext|>' |
|
|
|
elif len(position) == 4: |
|
x0, y0, x1, y1 = position |
|
x0 = x0 // 4 |
|
y0 = y0 // 4 |
|
x1 = x1 // 4 |
|
y1 = y1 // 4 |
|
text_str = ' '.join([f'[{c}]' for c in list(text)]) |
|
user_prompt += f' l{x0} t{y0} r{x1} b{y1} {text_str} <|endoftext|>' |
|
|
|
draw.rectangle((x0*4, y0*4, x1*4, y1*4), fill=1) |
|
print('prompt ', user_prompt) |
|
|
|
elif len(position) == 8: |
|
x0, y0, x1, y1, x2, y2, x3, y3 = position |
|
draw.polygon([(x0, y0), (x1, y1), (x2, y2), (x3, y3)], fill=1) |
|
x0 = x0 // 4 |
|
y0 = y0 // 4 |
|
x1 = x1 // 4 |
|
y1 = y1 // 4 |
|
x2 = x2 // 4 |
|
y2 = y2 // 4 |
|
x3 = x3 // 4 |
|
y3 = y3 // 4 |
|
xmin = min(x0, x1, x2, x3) |
|
ymin = min(y0, y1, y2, y3) |
|
xmax = max(x0, x1, x2, x3) |
|
ymax = max(y0, y1, y2, y3) |
|
text_str = ' '.join([f'[{c}]' for c in list(text)]) |
|
user_prompt += f' l{xmin} t{ymin} r{xmax} b{ymax} {text_str} <|endoftext|>' |
|
|
|
print('prompt ', user_prompt) |
|
|
|
|
|
prompt = tokenizer.encode(user_prompt) |
|
composed_prompt = tokenizer.decode(prompt) |
|
|
|
prompt = prompt[:77] |
|
while len(prompt) < 77: |
|
prompt.append(tokenizer.pad_token_id) |
|
|
|
prompts_cond = prompt |
|
prompts_nocond = [tokenizer.pad_token_id]*77 |
|
|
|
prompts_cond = [prompts_cond] * slider_batch |
|
prompts_nocond = [prompts_nocond] * slider_batch |
|
|
|
prompts_cond = torch.Tensor(prompts_cond).long().cuda() |
|
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda() |
|
|
|
scheduler = DDPMScheduler.from_pretrained('botp/stable-diffusion-v1-5', subfolder="scheduler") |
|
scheduler.set_timesteps(slider_step) |
|
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half() |
|
input = noise |
|
|
|
encoder_hidden_states_cond = text_encoder(prompts_cond)[0].half() |
|
encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0].half() |
|
|
|
image_mask = torch.Tensor(np.array(image_mask)).float().half().cuda() |
|
image_mask = image_mask.unsqueeze(0).unsqueeze(0).repeat(slider_batch, 1, 1, 1) |
|
|
|
image = Image.open(orig_i).resize((512,512)) |
|
image_tensor = to_tensor(image).unsqueeze(0).cuda().sub_(0.5).div_(0.5) |
|
|
|
masked_image = image_tensor * (1-image_mask) |
|
masked_feature = vae.encode(masked_image.half()).latent_dist.sample() |
|
masked_feature = masked_feature * vae.config.scaling_factor |
|
masked_feature = masked_feature.half() |
|
|
|
|
|
feature_mask = torch.nn.functional.interpolate(image_mask, size=(64,64), mode='nearest').cuda() |
|
|
|
for t in tqdm(scheduler.timesteps): |
|
with torch.no_grad(): |
|
|
|
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:slider_batch],feature_mask=feature_mask, masked_feature=masked_feature).sample |
|
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:slider_batch],feature_mask=feature_mask, masked_feature=masked_feature).sample |
|
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) |
|
input = scheduler.step(noisy_residual, t, input).prev_sample |
|
del noise_pred_cond |
|
del noise_pred_uncond |
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
input = 1 / vae.config.scaling_factor * input |
|
images = vae.decode(input, return_dict=False)[0] |
|
width, height = 512, 512 |
|
results = [] |
|
new_image = Image.new('RGB', (2*width, 2*height)) |
|
for index, image in enumerate(images.cpu().float()): |
|
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] |
|
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') |
|
results.append(image) |
|
row = index // 2 |
|
col = index % 2 |
|
new_image.paste(image, (col*width, row*height)) |
|
|
|
torch.cuda.empty_cache() |
|
|
|
return tuple(results), composed_prompt |
|
|
|
with gr.Blocks() as demo: |
|
|
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 1600px; margin: 20px auto;"> |
|
<h2 style="font-weight: 900; font-size: 2.3rem; margin: 0rem"> |
|
TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering |
|
</h2> |
|
<h2 style="font-weight: 900; font-size: 1.3rem; margin: 0rem"> |
|
(Demo for <b>Text Inpainting</b> ๐ผ๏ธ๐๏ธ) |
|
</h2> |
|
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem"> |
|
<a href="https://jingyechen.github.io/">Jingye Chen</a>, <a href="https://hypjudy.github.io/website/">Yupan Huang</a>, <a href="https://scholar.google.com/citations?user=0LTZGhUAAAAJ&hl=en">Tengchao Lv</a>, <a href="https://www.microsoft.com/en-us/research/people/lecu/">Lei Cui</a>, <a href="https://cqf.io/">Qifeng Chen</a>, <a href="https://thegenerality.com/">Furu Wei</a> |
|
</h2> |
|
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem"> |
|
HKUST, Sun Yat-sen University, Microsoft Research |
|
</h2> |
|
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem"> |
|
[<a href="https://arxiv.org/abs/2311.16465" style="color:blue;">arXiv</a>] |
|
[<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser-2" style="color:blue;">Code</a>] |
|
[<a href="https://jingyechen.github.io/textdiffuser2/" style="color:blue;">Project Page</a>] |
|
[<a href="https://discord.gg/q7eHPupu" style="color:purple;">Discord</a>] |
|
</h3> |
|
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> |
|
TextDiffuser-2 leverages language models to enhance text rendering, achieving greater flexibility. Different from text editing, the text inpainting task aims to add or modify text guided by users, ensuring that the inpainted text has a reasonable style (i.e., no need to match the style of the original text during modification exactly) and is coherent with backgrounds. TextDiffuser-2 offers an <b>improved user experience</b>. Specifically, users only need to type the text they wish to inpaint into the provided input box and then select key points on the Canvas. |
|
</h2> |
|
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> |
|
๐ <b>Tips for using this demo</b>: <b>(1)</b> Please carefully read the disclaimer in the below. Current verison can only support English. <b>(2)</b> The <b>prompt is optional</b>. If provided, the generated image may be more accurate. <b>(3)</b> Redo is used to cancel the last keyword, and undo is used to clear all keywords. <b>(4)</b> Current version only supports input image with resolution 512x512. <b>(5)</b> You can use either two points or four points to specify the text box. Using four points can better represent the perspective boxes. <b>(6)</b> Leave "Text to be inpaintd" empty can function as the text removal task. <b>(7)</b> Classifier-free guidance is set to a small value in default. It is noticed that a larger cfg may result in chromatic aberration against the background. <b>(8)</b> You can inpaint many text regions at one time. <b>(9)</b> Thanks for reading these tips, shall we start now? |
|
</h2> |
|
<img src="https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/inpainting_blank.jpg" alt="textdiffuser-2"> |
|
</div> |
|
""") |
|
|
|
with gr.Tab("Text Inpainting"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
keywords = gr.Textbox(label="(Optional) Keywords. Should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2", visible=False) |
|
positive_prompt = gr.Textbox(label="(Optional) Positive prompt", value="", visible=False) |
|
|
|
i = gr.Image(label="Image", type='filepath', value='https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example11.jpg') |
|
orig_i = gr.Image(label="Placeholder", type='filepath', height=512, width=512, visible=False) |
|
|
|
radio = gr.Radio(["Two Points", "Four Points"], label="Number of points to represent the text box.", value="Two Points", visible=True) |
|
|
|
with gr.Row(): |
|
t = gr.Textbox(label="Text to be inpainted", value='Test') |
|
prompt = gr.Textbox(label="(Optional) Prompt.") |
|
with gr.Row(): |
|
redo = gr.Button(value='Redo - Cancel the last keyword') |
|
undo = gr.Button(value='Undo - Clear the canvas') |
|
|
|
|
|
slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.", visible=False) |
|
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2.") |
|
slider_guidance = gr.Slider(minimum=1, maximum=13, value=2.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg. Smaller cfg produce stable results.") |
|
slider_batch = gr.Slider(minimum=1, maximum=6, value=4, step=1, label="Batch size", info="The number of images to be sampled.") |
|
slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=1.4, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.", visible=False) |
|
|
|
button = gr.Button("Generate") |
|
|
|
guest_id_box = gr.Textbox(label="guest_id", value=f"-1", visible=False) |
|
i.select(get_pixels,[i,orig_i,radio,t,guest_id_box],[i,orig_i,guest_id_box]) |
|
redo.click(exe_redo, [i,orig_i,t,guest_id_box],[i]) |
|
undo.click(exe_undo, [i,orig_i,t,guest_id_box],[i]) |
|
|
|
|
|
|
|
with gr.Column(): |
|
output = gr.Gallery(label='Generated image', rows=2, height=768) |
|
|
|
with gr.Accordion("Intermediate results", open=False, visible=False): |
|
gr.Markdown("Composed prompt") |
|
composed_prompt = gr.Textbox(label='') |
|
|
|
|
|
|
|
|
|
button.click(text_to_image, inputs=[guest_id_box, i, orig_i, prompt,keywords,positive_prompt, radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural], outputs=[output, composed_prompt]) |
|
|
|
gr.Markdown("## Image Examples") |
|
template = None |
|
gr.Examples( |
|
[ |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example1.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example2.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example3.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example4.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example5.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example7.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example8.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example11.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example12.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example13.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example14.jpg"], |
|
["https://raw.githubusercontent.com/JingyeChen/jingyechen.github.io/master/textdiffuser2/static/images/example15.jpg"], |
|
], |
|
[ |
|
i |
|
], |
|
examples_per_page=25, |
|
) |
|
|
|
gr.HTML( |
|
""" |
|
<div style="text-align: justify; max-width: 1100px; margin: 20px auto;"> |
|
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> |
|
<b>Version</b>: 1.0 |
|
</h3> |
|
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> |
|
<b>Contact</b>: |
|
For help or issues using TextDiffuser-2, please email Jingye Chen <a href="mailto:[email protected]">([email protected])</a>, Yupan Huang <a href="mailto:[email protected]">([email protected])</a> or submit a GitHub issue. For other communications related to TextDiffuser-2, please contact Lei Cui <a href="mailto:[email protected]">([email protected])</a> or Furu Wei <a href="mailto:[email protected]">([email protected])</a>. |
|
</h3> |
|
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> |
|
<b>Disclaimer</b>: |
|
Please note that the demo is intended for academic and research purposes <b>ONLY</b>. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use. |
|
</h3> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
demo.launch() |