File size: 7,855 Bytes
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a81aa5e
 
 
cc63231
a81aa5e
cc63231
 
4c2dfc1
cc63231
4c2dfc1
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a049f9
 
 
 
 
a91719a
6a049f9
 
 
 
5069701
 
 
 
 
 
 
6a049f9
 
 
 
 
 
a91719a
6a049f9
 
cc63231
 
e4aea0c
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a049f9
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import numpy as np
from ultralytics import YOLO
import chromadb
from transformers import pipeline
from sklearn.metrics.pairwise import cosine_similarity

# Load segmentation model
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load YOLOv8 model
#@st.cache_resource
#def load_yolo_model():
#    return YOLO("./best.pt")

#yolo_model = load_yolo_model()

# Load chromaDB
client = chromadb.PersistentClient(path="./clothesDB_202410")
#collection = client.get_collection(name="clothes_items_ver3")
collection = client.get_collection(name="clothes")


# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
    # Segment image
    segments = segmenter(img)

    # Create list of masks
    mask_list = []
    detected_categories = []
    for s in segments:
        if s['label'] in clothes:
            mask_list.append(s['mask'])
            detected_categories.append(s['label'])  # Store detected categories

    # Paste all masks on top of each other
    final_mask = np.zeros_like(np.array(img)[:, :, 0])  # Initialize mask
    for mask in mask_list:
        current_mask = np.array(mask)
        final_mask = np.maximum(final_mask, current_mask)  # Use maximum to combine masks

    # Convert final mask from np array to PIL image
    final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255)  # Convert to binary mask

    # Apply mask to original image
    img_with_alpha = img.convert("RGBA")  # Ensure the image has an alpha channel
    img_with_alpha.putalpha(final_mask)

    return img_with_alpha.convert("RGB"), final_mask, detected_categories  # Return detected categories

def find_similar_images(query_embedding, collection, top_k=5):
    # ๋ชจ๋“  ์ž„๋ฒ ๋”ฉ์„ ๊ฐ€์ ธ์˜ด
    all_embeddings = collection.get(include=['embeddings'])['embeddings']
    database_embeddings = np.array(all_embeddings)
    
    # ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]
    
    # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ด
    all_data = collection.get(include=['metadatas'])['metadatas']
    st.write(f"Embeddings found: {len(all_data['embeddings'])}")
    st.write(f"Metadatas found: {len(all_data['metadatas'])}")
    st.write(f"Documents found: {len(all_data['documents'])}")

    # ๋ฒกํ„ฐ ID๋ฅผ ํ•จ๊ป˜ ๊ฐ€์ ธ์™€์„œ ํ™•์ธ
    vector_data = collection.get(include=['embeddings', 'metadatas', 'ids'])

    top_metadatas = [all_data[idx] for idx in top_indices]
    
    results = []
    for idx, metadata in enumerate(top_metadatas):
        results.append({
            'info': metadata,
            'similarity': similarities[top_indices[idx]]
        })
    return results



# ์„ธ์…˜ ์ƒํƒœ ์ดˆ๊ธฐํ™”
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'segmented_image' not in st.session_state:  # Add segmented_image to session state
    st.session_state.segmented_image = None
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Streamlit app
st.title("Advanced Fashion Search App")

# ๋‹จ๊ณ„๋ณ„ ์ฒ˜๋ฆฌ
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                # Perform segmentation
                segmented_image, final_mask, detected_categories = segment_clothing(query_image)
                st.session_state.segmented_image = segmented_image  # Store segmented image in session state
                st.session_state.detections = detected_categories  # Store detected categories
                st.image(segmented_image, caption="Segmented Image", use_column_width=True)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True)
    st.subheader("Detected Clothing Categories:")
    
    if st.session_state.detections:
        selected_category = st.selectbox("Select a category to search:", st.session_state.detections)
        if st.button("Search Similar Items"):
            st.session_state.selected_category = selected_category
            st.session_state.step = 'show_results'
    else:
        st.warning("No categories detected.")

elif st.session_state.step == 'show_results':
    original_image = st.session_state.query_image.convert("RGB")  # Convert to RGB before displaying
    st.image(original_image, caption="Original Image", use_column_width=True)
    
    # Get the embedding of the segmented image
    query_embedding = get_image_embedding(st.session_state.segmented_image)  # Use the segmented image from session state

    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:
                st.write(f"Category: {category}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")

    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.segmented_image = None  # Reset segmented_image