File size: 9,824 Bytes
c32f190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import math
import torch
import torch.nn as nn


# FFN
def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )


def reshape_tensor(x, heads):
    bs, length, width = x.shape
    # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
    x = x.view(bs, length, heads, -1)
    # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
    x = x.transpose(1, 2)
    # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
    x = x.reshape(bs, heads, length, -1)
    return x


class PerceiverAttention(nn.Module):
    def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
        self.norm2 = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """
        Args:
            x (torch.Tensor): image features
                shape (b, n1, D)
            latent (torch.Tensor): latent features
                shape (b, n2, D)
        """
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, seq_len, _ = latents.shape

        q = self.to_q(latents)
        kv_input = torch.cat((x, latents), dim=-2)
        k, v = self.to_kv(kv_input).chunk(2, dim=-1)

        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # attention
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
        out = weight @ v

        out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)

        return self.to_out(out)


class LocalFacialExtractor(nn.Module):
    def __init__(
            self,
            dim=1024,
            depth=10,
            dim_head=64,
            heads=16,
            num_id_token=5,
            num_queries=32,
            output_dim=2048,
            ff_mult=4,
    ):
        """
        Initializes the LocalFacialExtractor class.

        Parameters:
        - dim (int): The dimensionality of latent features.
        - depth (int): Total number of PerceiverAttention and FeedForward layers.
        - dim_head (int): Dimensionality of each attention head.
        - heads (int): Number of attention heads.
        - num_id_token (int): Number of tokens used for identity features.
        - num_queries (int): Number of query tokens for the latent representation.
        - output_dim (int): Output dimension after projection.
        - ff_mult (int): Multiplier for the feed-forward network hidden dimension.
        """
        super().__init__()

        # Storing identity token and query information
        self.num_id_token = num_id_token
        self.dim = dim
        self.num_queries = num_queries
        assert depth % 5 == 0
        self.depth = depth // 5
        scale = dim ** -0.5

        # Learnable latent query embeddings
        self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale)
        # Projection layer to map the latent output to the desired dimension
        self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim))

        # Attention and FeedForward layer stack
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(
                nn.ModuleList(
                    [
                        PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),  # Perceiver Attention layer
                        FeedForward(dim=dim, mult=ff_mult),  # FeedForward layer
                    ]
                )
            )

        # Mappings for each of the 5 different ViT features
        for i in range(5):
            setattr(
                self,
                f'mapping_{i}',
                nn.Sequential(
                    nn.Linear(1024, 1024),
                    nn.LayerNorm(1024),
                    nn.LeakyReLU(),
                    nn.Linear(1024, 1024),
                    nn.LayerNorm(1024),
                    nn.LeakyReLU(),
                    nn.Linear(1024, dim),
                ),
            )

        # Mapping for identity embedding vectors
        self.id_embedding_mapping = nn.Sequential(
            nn.Linear(1280, 1024),
            nn.LayerNorm(1024),
            nn.LeakyReLU(),
            nn.Linear(1024, 1024),
            nn.LayerNorm(1024),
            nn.LeakyReLU(),
            nn.Linear(1024, dim * num_id_token),
        )

    def forward(self, x, y):
        """
        Forward pass for LocalFacialExtractor.

        Parameters:
        - x (Tensor): The input identity embedding tensor of shape (batch_size, 1280).
        - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024).

        Returns:
        - Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim).
        """

        # Repeat latent queries for the batch size
        latents = self.latents.repeat(x.size(0), 1, 1)

        # Map the identity embedding to tokens
        x = self.id_embedding_mapping(x)
        x = x.reshape(-1, self.num_id_token, self.dim)

        # Concatenate identity tokens with the latent queries
        latents = torch.cat((latents, x), dim=1)

        # Process each of the 5 visual feature inputs
        for i in range(5):
            vit_feature = getattr(self, f'mapping_{i}')(y[i])
            ctx_feature = torch.cat((x, vit_feature), dim=1)

            # Pass through the PerceiverAttention and FeedForward layers
            for attn, ff in self.layers[i * self.depth: (i + 1) * self.depth]:
                latents = attn(ctx_feature, latents) + latents
                latents = ff(latents) + latents

        # Retain only the query latents
        latents = latents[:, :self.num_queries]
        # Project the latents to the output dimension
        latents = latents @ self.proj_out
        return latents
    

class PerceiverCrossAttention(nn.Module):
    """
    
    Args:
        dim (int): Dimension of the input latent and output. Default is 3072.
        dim_head (int): Dimension of each attention head. Default is 128.
        heads (int): Number of attention heads. Default is 16.
        kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048.
    
    Attributes:
        scale (float): Scaling factor used in dot-product attention for numerical stability.
        norm1 (nn.LayerNorm): Layer normalization applied to the input image features.
        norm2 (nn.LayerNorm): Layer normalization applied to the latent features.
        to_q (nn.Linear): Linear layer for projecting the latent features into queries.
        to_kv (nn.Linear): Linear layer for projecting the input features into keys and values.
        to_out (nn.Linear): Linear layer for outputting the final result after attention.

    """
    def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.dim_head = dim_head
        self.heads = heads
        inner_dim = dim_head * heads

        # Layer normalization to stabilize training
        self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
        self.norm2 = nn.LayerNorm(dim)

        # Linear transformations to produce queries, keys, and values
        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

    def forward(self, x, latents):
        """

        Args:
            x (torch.Tensor): Input image features with shape (batch_size, n1, D), where:
                - batch_size (b): Number of samples in the batch.
                - n1: Sequence length (e.g., number of patches or tokens).
                - D: Feature dimension.
            
            latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where:
                - n2: Number of latent elements.
        
        Returns:
            torch.Tensor: Attention-modulated features with shape (batch_size, n2, D).
        
        """
        # Apply layer normalization to the input image and latent features
        x = self.norm1(x)
        latents = self.norm2(latents)

        b, seq_len, _ = latents.shape

        # Compute queries, keys, and values
        q = self.to_q(latents)
        k, v = self.to_kv(x).chunk(2, dim=-1)

        # Reshape tensors to split into attention heads
        q = reshape_tensor(q, self.heads)
        k = reshape_tensor(k, self.heads)
        v = reshape_tensor(v, self.heads)

        # Compute attention weights
        scale = 1 / math.sqrt(math.sqrt(self.dim_head))
        weight = (q * scale) @ (k * scale).transpose(-2, -1)  # More stable scaling than post-division
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        # Compute the output via weighted combination of values
        out = weight @ v

        # Reshape and permute to prepare for final linear transformation
        out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1)

        return self.to_out(out)