ConsisID / util /rife /loss.py
BestWishYsh's picture
Upload 57 files
c32f190 verified
raw
history blame
4.67 kB
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EPE(nn.Module):
def __init__(self):
super(EPE, self).__init__()
def forward(self, flow, gt, loss_mask):
loss_map = (flow - gt.detach()) ** 2
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
return loss_map * loss_mask
class Ternary(nn.Module):
def __init__(self):
super(Ternary, self).__init__()
patch_size = 7
out_channels = patch_size * patch_size
self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
self.w = np.transpose(self.w, (3, 2, 0, 1))
self.w = torch.tensor(self.w).float().to(device)
def transform(self, img):
patches = F.conv2d(img, self.w, padding=3, bias=None)
transf = patches - img
transf_norm = transf / torch.sqrt(0.81 + transf**2)
return transf_norm
def rgb2gray(self, rgb):
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def hamming(self, t1, t2):
dist = (t1 - t2) ** 2
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
return dist_norm
def valid_mask(self, t, padding):
n, _, h, w = t.size()
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
mask = F.pad(inner, [padding] * 4)
return mask
def forward(self, img0, img1):
img0 = self.transform(self.rgb2gray(img0))
img1 = self.transform(self.rgb2gray(img1))
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
class SOBEL(nn.Module):
def __init__(self):
super(SOBEL, self).__init__()
self.kernelX = torch.tensor(
[
[1, 0, -1],
[2, 0, -2],
[1, 0, -1],
]
).float()
self.kernelY = self.kernelX.clone().T
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
def forward(self, pred, gt):
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0)
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :]
pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :]
L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y)
loss = L1X + L1Y
return loss
class MeanShift(nn.Conv2d):
def __init__(self, data_mean, data_std, data_range=1, norm=True):
c = len(data_mean)
super(MeanShift, self).__init__(c, c, kernel_size=1)
std = torch.Tensor(data_std)
self.weight.data = torch.eye(c).view(c, c, 1, 1)
if norm:
self.weight.data.div_(std.view(c, 1, 1, 1))
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
self.bias.data.div_(std)
else:
self.weight.data.mul_(std.view(c, 1, 1, 1))
self.bias.data = data_range * torch.Tensor(data_mean)
self.requires_grad = False
class VGGPerceptualLoss(torch.nn.Module):
def __init__(self, rank=0):
super(VGGPerceptualLoss, self).__init__()
blocks = []
pretrained = True
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
for param in self.parameters():
param.requires_grad = False
def forward(self, X, Y, indices=None):
X = self.normalize(X)
Y = self.normalize(Y)
indices = [2, 7, 12, 21, 30]
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5]
k = 0
loss = 0
for i in range(indices[-1]):
X = self.vgg_pretrained_features[i](X)
Y = self.vgg_pretrained_features[i](Y)
if (i + 1) in indices:
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
k += 1
return loss
if __name__ == "__main__":
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device)
ternary_loss = Ternary()
print(ternary_loss(img0, img1).shape)