|
import torch |
|
import numpy as np |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.models as models |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EPE(nn.Module): |
|
def __init__(self): |
|
super(EPE, self).__init__() |
|
|
|
def forward(self, flow, gt, loss_mask): |
|
loss_map = (flow - gt.detach()) ** 2 |
|
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5 |
|
return loss_map * loss_mask |
|
|
|
|
|
class Ternary(nn.Module): |
|
def __init__(self): |
|
super(Ternary, self).__init__() |
|
patch_size = 7 |
|
out_channels = patch_size * patch_size |
|
self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels)) |
|
self.w = np.transpose(self.w, (3, 2, 0, 1)) |
|
self.w = torch.tensor(self.w).float().to(device) |
|
|
|
def transform(self, img): |
|
patches = F.conv2d(img, self.w, padding=3, bias=None) |
|
transf = patches - img |
|
transf_norm = transf / torch.sqrt(0.81 + transf**2) |
|
return transf_norm |
|
|
|
def rgb2gray(self, rgb): |
|
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :] |
|
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b |
|
return gray |
|
|
|
def hamming(self, t1, t2): |
|
dist = (t1 - t2) ** 2 |
|
dist_norm = torch.mean(dist / (0.1 + dist), 1, True) |
|
return dist_norm |
|
|
|
def valid_mask(self, t, padding): |
|
n, _, h, w = t.size() |
|
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t) |
|
mask = F.pad(inner, [padding] * 4) |
|
return mask |
|
|
|
def forward(self, img0, img1): |
|
img0 = self.transform(self.rgb2gray(img0)) |
|
img1 = self.transform(self.rgb2gray(img1)) |
|
return self.hamming(img0, img1) * self.valid_mask(img0, 1) |
|
|
|
|
|
class SOBEL(nn.Module): |
|
def __init__(self): |
|
super(SOBEL, self).__init__() |
|
self.kernelX = torch.tensor( |
|
[ |
|
[1, 0, -1], |
|
[2, 0, -2], |
|
[1, 0, -1], |
|
] |
|
).float() |
|
self.kernelY = self.kernelX.clone().T |
|
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device) |
|
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device) |
|
|
|
def forward(self, pred, gt): |
|
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3] |
|
img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0) |
|
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1) |
|
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1) |
|
pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :] |
|
pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :] |
|
|
|
L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y) |
|
loss = L1X + L1Y |
|
return loss |
|
|
|
|
|
class MeanShift(nn.Conv2d): |
|
def __init__(self, data_mean, data_std, data_range=1, norm=True): |
|
c = len(data_mean) |
|
super(MeanShift, self).__init__(c, c, kernel_size=1) |
|
std = torch.Tensor(data_std) |
|
self.weight.data = torch.eye(c).view(c, c, 1, 1) |
|
if norm: |
|
self.weight.data.div_(std.view(c, 1, 1, 1)) |
|
self.bias.data = -1 * data_range * torch.Tensor(data_mean) |
|
self.bias.data.div_(std) |
|
else: |
|
self.weight.data.mul_(std.view(c, 1, 1, 1)) |
|
self.bias.data = data_range * torch.Tensor(data_mean) |
|
self.requires_grad = False |
|
|
|
|
|
class VGGPerceptualLoss(torch.nn.Module): |
|
def __init__(self, rank=0): |
|
super(VGGPerceptualLoss, self).__init__() |
|
blocks = [] |
|
pretrained = True |
|
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features |
|
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X, Y, indices=None): |
|
X = self.normalize(X) |
|
Y = self.normalize(Y) |
|
indices = [2, 7, 12, 21, 30] |
|
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5] |
|
k = 0 |
|
loss = 0 |
|
for i in range(indices[-1]): |
|
X = self.vgg_pretrained_features[i](X) |
|
Y = self.vgg_pretrained_features[i](Y) |
|
if (i + 1) in indices: |
|
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1 |
|
k += 1 |
|
return loss |
|
|
|
|
|
if __name__ == "__main__": |
|
img0 = torch.zeros(3, 3, 256, 256).float().to(device) |
|
img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device) |
|
ternary_loss = Ternary() |
|
print(ternary_loss(img0, img1).shape) |
|
|