Update app.py
Browse files
app.py
CHANGED
@@ -117,60 +117,6 @@ os.makedirs("./gradio_tmp", exist_ok=True)
|
|
117 |
upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
|
118 |
frame_interpolation_model = load_rife_model("model_rife")
|
119 |
|
120 |
-
@spaces.GPU(duration=65)
|
121 |
-
def infer(
|
122 |
-
prompt: str,
|
123 |
-
image_input: str,
|
124 |
-
num_inference_steps: int,
|
125 |
-
guidance_scale: float,
|
126 |
-
seed: int = 42,
|
127 |
-
progress=gr.Progress(track_tqdm=True),
|
128 |
-
):
|
129 |
-
if seed == -1:
|
130 |
-
seed = random.randint(0, 2**8 - 1)
|
131 |
-
|
132 |
-
id_image = np.array(ImageOps.exif_transpose(Image.fromarray(image_input)).convert("RGB"))
|
133 |
-
id_image = resize_numpy_image_long(id_image, 1024)
|
134 |
-
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
|
135 |
-
eva_transform_mean, eva_transform_std,
|
136 |
-
face_main_model, device, dtype, id_image,
|
137 |
-
original_id_image=id_image, is_align_face=True,
|
138 |
-
cal_uncond=False)
|
139 |
-
|
140 |
-
if is_kps:
|
141 |
-
kps_cond = face_kps
|
142 |
-
else:
|
143 |
-
kps_cond = None
|
144 |
-
|
145 |
-
tensor = align_crop_face_image.cpu().detach()
|
146 |
-
tensor = tensor.squeeze()
|
147 |
-
tensor = tensor.permute(1, 2, 0)
|
148 |
-
tensor = tensor.numpy() * 255
|
149 |
-
tensor = tensor.astype(np.uint8)
|
150 |
-
image = ImageOps.exif_transpose(Image.fromarray(tensor))
|
151 |
-
|
152 |
-
prompt = prompt.strip('"')
|
153 |
-
|
154 |
-
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
155 |
-
|
156 |
-
video_pt = pipe(
|
157 |
-
prompt=prompt,
|
158 |
-
image=image,
|
159 |
-
num_videos_per_prompt=1,
|
160 |
-
num_inference_steps=num_inference_steps,
|
161 |
-
num_frames=49,
|
162 |
-
use_dynamic_cfg=False,
|
163 |
-
guidance_scale=guidance_scale,
|
164 |
-
generator=generator,
|
165 |
-
id_vit_hidden=id_vit_hidden,
|
166 |
-
id_cond=id_cond,
|
167 |
-
kps_cond=kps_cond,
|
168 |
-
output_type="pt",
|
169 |
-
).frames
|
170 |
-
|
171 |
-
##free_memory()
|
172 |
-
return video_pt, seed
|
173 |
-
|
174 |
|
175 |
def convert_to_gif(video_path):
|
176 |
clip = VideoFileClip(video_path)
|
@@ -196,7 +142,7 @@ def delete_old_files():
|
|
196 |
|
197 |
|
198 |
##threading.Thread(target=delete_old_files, daemon=True).start()
|
199 |
-
@spaces.GPU
|
200 |
def generate(
|
201 |
prompt,
|
202 |
image_input,
|
@@ -205,14 +151,40 @@ def generate(
|
|
205 |
rife_status,
|
206 |
progress=gr.Progress(track_tqdm=True)
|
207 |
):
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
if scale_status:
|
217 |
latents = upscale_batch_and_concatenate(upscale_model, latents, device)
|
218 |
if rife_status:
|
|
|
117 |
upscale_model = load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
|
118 |
frame_interpolation_model = load_rife_model("model_rife")
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
def convert_to_gif(video_path):
|
122 |
clip = VideoFileClip(video_path)
|
|
|
142 |
|
143 |
|
144 |
##threading.Thread(target=delete_old_files, daemon=True).start()
|
145 |
+
@spaces.GPU(duration=65)
|
146 |
def generate(
|
147 |
prompt,
|
148 |
image_input,
|
|
|
151 |
rife_status,
|
152 |
progress=gr.Progress(track_tqdm=True)
|
153 |
):
|
154 |
+
def infer(prompt: str,image_input: str,num_inference_steps: int,guidance_scale: float,seed: int = 42,progress=gr.Progress(track_tqdm=True),):
|
155 |
+
if seed == -1:
|
156 |
+
seed = random.randint(0, 2**8 - 1)
|
157 |
+
|
158 |
+
id_image = np.array(ImageOps.exif_transpose(Image.fromarray(image_input)).convert("RGB"))
|
159 |
+
id_image = resize_numpy_image_long(id_image, 1024)
|
160 |
+
id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper, face_clip_model, handler_ante,
|
161 |
+
eva_transform_mean, eva_transform_std,
|
162 |
+
face_main_model, device, dtype, id_image,
|
163 |
+
original_id_image=id_image, is_align_face=True,
|
164 |
+
cal_uncond=False)
|
165 |
+
|
166 |
+
if is_kps:
|
167 |
+
kps_cond = face_kps
|
168 |
+
else:
|
169 |
+
kps_cond = None
|
170 |
+
|
171 |
+
tensor = align_crop_face_image.cpu().detach()
|
172 |
+
tensor = tensor.squeeze()
|
173 |
+
tensor = tensor.permute(1, 2, 0)
|
174 |
+
tensor = tensor.numpy() * 255
|
175 |
+
tensor = tensor.astype(np.uint8)
|
176 |
+
image = ImageOps.exif_transpose(Image.fromarray(tensor))
|
177 |
+
|
178 |
+
prompt = prompt.strip('"')
|
179 |
+
|
180 |
+
generator = torch.Generator(device).manual_seed(seed) if seed else None
|
181 |
+
|
182 |
+
video_pt = pipe(prompt=prompt,image=image,num_videos_per_prompt=1,num_inference_steps=num_inference_steps,num_frames=49,use_dynamic_cfg=False,guidance_scale=guidance_scale,generator=generator,id_vit_hidden=id_vit_hidden,id_cond=id_cond,kps_cond=kps_cond,output_type="pt",).frames
|
183 |
+
|
184 |
+
##free_memory()
|
185 |
+
return video_pt, seed
|
186 |
+
|
187 |
+
latents, seed = infer(prompt,image_input,num_inference_steps=4,guidance_scale=7.0,seed=seed_value,progress=progress,)
|
188 |
if scale_status:
|
189 |
latents = upscale_batch_and_concatenate(upscale_model, latents, device)
|
190 |
if rife_status:
|