from diffusers import KandinskyV22CombinedPipeline import gradio as gr from accelerate import Accelerator import torch, os, random from transformers import pipeline from PIL import Image accelerator = Accelerator() pipe = accelerator.prepare(KandinskyV22CombinedPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float32, use_safetensors=True, safety_checker=False)) pipe = pipe.to("cpu") apol=[] def plex(prompt,negative_prompt,stips,uno): apol=[] generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364)) image = pipe(prompt=[prompt]*2, negative_prompt=[negative_prompt]*2,num_inference_steps=stips, prior_guidance_scale=uno, height=512, width=512, generator=generator) for i, igs in enumerate(image["images"]): apol.append(igs) return apol iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"),gr.Textbox(label="negative prompt", value="low quality, bad quality"), gr.Slider(label="inference_steps",minimum=1,step=1,maximum=10,value=5),gr.Slider(label="prior_guidance_scale",minimum=0.1,step=0.1,maximum=1.0,value=0.5)],outputs=gr.Gallery(columns=2), title="Txt2Img_KndskyV22_Cmbnd by JoPmt", description="Running on CPU, very slow!") iface.queue(max_size=1) iface.launch(max_threads=1)