import streamlit as st from transformers import pipeline from huggingface_hub import login import torch import os #### # Set page configuration st.set_page_config(page_title="Text GenAI Model", page_icon="🤖") st.title("Text GenAI Model") st.subheader("Answer Random Questions Using Hugging Face Models") # Fetch Hugging Face token from Streamlit Secrets # HF_TOKEN = secret.HF_TOKEN # access_token_read = st.secrets[HF_TOKEN] # Ensure this is set in your Streamlit Cloud Secrets # # Free up GPU memory (if using GPU) # torch.cuda.empty_cache() # # Set environment variable to avoid fragmentation # os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # # Login to Hugging Face Hub using the access token # login(token=access_token_read) # Initialize the text generation pipeline with GPT-2 model pipe = pipeline("text-generation", model="distilbert/distilgpt2") # Using CPU # Input from the user text = st.text_input("Ask a Random Question") if text: # Generate text based on the random question response = pipe(f"Answer the question: {text}", max_length=150, num_return_sequences=1) # Display the generated response st.text(f"Answer: {response[0]['generated_text']}")