|
from nemo.collections.asr.models import EncDecCTCModelBPE |
|
from omegaconf import open_dict |
|
|
|
import os |
|
import tempfile |
|
import torch |
|
import gradio as gr |
|
from pydub import AudioSegment |
|
import time |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
MODEL_NAME="ayymen/stt_zgh_fastconformer_ctc_small" |
|
YT_LENGTH_LIMIT_S=3600 |
|
|
|
model = EncDecCTCModelBPE.from_pretrained(model_name=MODEL_NAME).to(device) |
|
|
|
with open_dict(model.cfg): |
|
model.cfg.decoding.strategy = "beam" |
|
model.cfg.decoding.beam.beam_size = 256 |
|
model.cfg.decoding.beam.beam_alpha = 1.5 |
|
model.cfg.decoding.beam.beam_beta = 1.5 |
|
model.cfg.decoding.beam.kenlm_path = "kenlm.bin" |
|
|
|
model.change_decoding_strategy(model.cfg.decoding) |
|
|
|
model.eval() |
|
|
|
def get_transcripts(audio_path): |
|
audio = AudioSegment.from_file(audio_path) |
|
|
|
if audio.channels != 1 or audio.frame_rate != 16000: |
|
audio = audio.set_channels(1).set_frame_rate(16000) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
audio_path = os.path.join(tmpdirname, "audio.wav") |
|
audio.export(audio_path, format="wav") |
|
text = model.transcribe([audio_path])[0] |
|
else: |
|
text = model.transcribe([audio_path])[0] |
|
return text |
|
|
|
''' |
|
article = ( |
|
"<p style='text-align: center'>" |
|
"<a href='https://huggingface.co/nvidia/parakeet-rnnt-1.1b' target='_blank'>ποΈ Learn more about Parakeet model</a> | " |
|
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>π FastConformer paper</a> | " |
|
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» Repository</a>" |
|
"</p>" |
|
) |
|
''' |
|
|
|
EXAMPLES = [ |
|
["135.wav"], |
|
["common_voice_zgh_37837257.mp3"], |
|
] |
|
|
|
""" |
|
YT_EXAMPLES = [ |
|
["https://www.youtube.com/shorts/CSgTSE50MHY"], |
|
["https://www.youtube.com/shorts/OxQtqOyAFLE"] |
|
] |
|
""" |
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
if "youtube.com/shorts/" in video_id: |
|
video_id = video_id.split("/")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def yt_transcribe(yt_url, max_filesize=75.0): |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
audio = AudioSegment.from_file(filepath) |
|
audio = audio.set_channels(1).set_frame_rate(16000) |
|
wav_filepath = os.path.join(tmpdirname, "audio.wav") |
|
audio.export(wav_filepath, format="wav") |
|
text = get_transcripts(wav_filepath) |
|
|
|
return html_embed_str, text |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=get_transcripts, |
|
inputs=[ |
|
gr.Audio(sources="microphone", type="filepath") |
|
], |
|
outputs="text", |
|
title="Transcribe Audio", |
|
description=( |
|
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
cache_examples=False, |
|
) |
|
|
|
file_transcribe = gr.Interface( |
|
fn=get_transcripts, |
|
inputs=[ |
|
gr.Audio(sources="upload", type="filepath", label="Audio file"), |
|
], |
|
outputs="text", |
|
examples=EXAMPLES, |
|
title="Transcribe Audio", |
|
description=( |
|
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
cache_examples=False, |
|
) |
|
|
|
""" |
|
youtube_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
], |
|
outputs=["html", "text"], |
|
examples=YT_EXAMPLES, |
|
title="Transcribe Audio", |
|
description=( |
|
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" |
|
" of arbitrary length." |
|
), |
|
allow_flagging="never", |
|
) |
|
""" |
|
|
|
with demo: |
|
gr.TabbedInterface( |
|
[ |
|
mf_transcribe, |
|
file_transcribe, |
|
|
|
], |
|
[ |
|
"Microphone", |
|
"Audio file", |
|
|
|
] |
|
) |
|
|
|
demo.launch(server_name="0.0.0.0") |
|
|