Spaces:
Running
Running
Upload 3 files
Browse files- all_models.py +14 -1
- app.py +128 -41
- externalmod.py +57 -4
all_models.py
CHANGED
@@ -901,4 +901,17 @@ models = [
|
|
901 |
"CompVis/stable-diffusion-v1-3", #207
|
902 |
"CompVis/stable-diffusion-v1-2", #208
|
903 |
"CompVis/stable-diffusion-v1-1", #209
|
904 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
901 |
"CompVis/stable-diffusion-v1-3", #207
|
902 |
"CompVis/stable-diffusion-v1-2", #208
|
903 |
"CompVis/stable-diffusion-v1-1", #209
|
904 |
+
]
|
905 |
+
|
906 |
+
|
907 |
+
from externalmod import find_model_list
|
908 |
+
|
909 |
+
#models = find_model_list("Yntec", [], "", "last_modified", 20)
|
910 |
+
|
911 |
+
# Examples:
|
912 |
+
#models = ['yodayo-ai/kivotos-xl-2.0', 'yodayo-ai/holodayo-xl-2.1'] # specific models
|
913 |
+
#models = find_model_list("Yntec", [], "", "last_modified", 20) # Yntec's latest 20 models
|
914 |
+
#models = find_model_list("Yntec", ["anime"], "", "last_modified", 20) # Yntec's latest 20 models with 'anime' tag
|
915 |
+
#models = find_model_list("Yntec", [], "anime", "last_modified", 20) # Yntec's latest 20 models without 'anime' tag
|
916 |
+
#models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface
|
917 |
+
#models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface
|
app.py
CHANGED
@@ -1,40 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from random import randint
|
3 |
from all_models import models
|
4 |
-
|
5 |
from externalmod import gr_Interface_load
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def load_fn(models):
|
8 |
global models_load
|
9 |
models_load = {}
|
10 |
-
|
11 |
for model in models:
|
12 |
if model not in models_load.keys():
|
13 |
try:
|
14 |
-
m = gr_Interface_load(f'models/{model}')
|
15 |
except Exception as error:
|
16 |
-
|
|
|
17 |
models_load.update({model: m})
|
18 |
|
19 |
-
|
20 |
load_fn(models)
|
21 |
|
22 |
-
|
23 |
num_models = 1
|
|
|
|
|
24 |
default_models = models[:num_models]
|
25 |
-
|
26 |
-
|
27 |
|
28 |
def extend_choices(choices):
|
29 |
return choices + (num_models - len(choices)) * ['NA']
|
30 |
|
31 |
-
|
32 |
def update_imgbox(choices):
|
33 |
choices_plus = extend_choices(choices)
|
34 |
-
return [gr.Image(None, label
|
35 |
|
36 |
-
|
37 |
-
def gen_fn(model_str, prompt):
|
38 |
if model_str == 'NA':
|
39 |
return None
|
40 |
noise = str('') #str(randint(0, 99999999999))
|
@@ -45,7 +47,61 @@ def gen_fnsix(model_str, prompt):
|
|
45 |
return None
|
46 |
noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
|
47 |
return models_load[model_str](f'{prompt} {noisesix}')
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
gr.HTML(
|
50 |
"""
|
51 |
<div>
|
@@ -54,24 +110,38 @@ with gr.Blocks() as demo:
|
|
54 |
"""
|
55 |
)
|
56 |
with gr.Tab('One Image'):
|
57 |
-
model_choice = gr.Dropdown(models, label
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
gen_button
|
64 |
-
stop_button = gr.Button('Stop', variant = 'secondary', interactive = False)
|
65 |
-
gen_button.click(lambda s: gr.update(interactive = True), None, stop_button)
|
66 |
|
67 |
with gr.Row():
|
68 |
-
output = [gr.Image(label
|
|
|
|
|
69 |
|
70 |
for i, o in enumerate(output):
|
71 |
img_in = gr.Number(i, visible = False)
|
72 |
num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False)
|
73 |
-
gen_event = gen_button.click
|
74 |
-
|
|
|
|
|
|
|
75 |
with gr.Row():
|
76 |
gr.HTML(
|
77 |
"""
|
@@ -81,35 +151,52 @@ with gr.Blocks() as demo:
|
|
81 |
"""
|
82 |
)
|
83 |
with gr.Tab('Up To Six'):
|
84 |
-
model_choice2 = gr.Dropdown(models, label
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
gen_button2
|
91 |
-
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False)
|
92 |
-
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2)
|
93 |
gr.HTML(
|
94 |
"""
|
95 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
96 |
<div>
|
97 |
<body>
|
98 |
-
<div class="center"><p style="margin-bottom: 10px;
|
99 |
</div>
|
100 |
</body>
|
101 |
</div>
|
102 |
</div>
|
103 |
"""
|
104 |
)
|
105 |
-
with gr.
|
106 |
-
output2 = [gr.Image(label = ''
|
|
|
|
|
107 |
|
108 |
for i, o in enumerate(output2):
|
109 |
-
img_i = gr.Number(i, visible
|
110 |
-
num_images.change(lambda i, n: gr.update(visible
|
111 |
-
gen_event2 = gen_button2.click
|
112 |
-
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
gr.HTML(
|
115 |
"""
|
@@ -119,5 +206,5 @@ with gr.Blocks() as demo:
|
|
119 |
"""
|
120 |
)
|
121 |
|
122 |
-
demo.queue()
|
123 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from random import randint
|
3 |
from all_models import models
|
|
|
4 |
from externalmod import gr_Interface_load
|
5 |
+
import asyncio
|
6 |
+
import os
|
7 |
+
from threading import RLock
|
8 |
+
lock = RLock()
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
10 |
|
11 |
def load_fn(models):
|
12 |
global models_load
|
13 |
models_load = {}
|
|
|
14 |
for model in models:
|
15 |
if model not in models_load.keys():
|
16 |
try:
|
17 |
+
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
|
18 |
except Exception as error:
|
19 |
+
print(error)
|
20 |
+
m = gr.Interface(lambda: None, ['text'], ['image'])
|
21 |
models_load.update({model: m})
|
22 |
|
|
|
23 |
load_fn(models)
|
24 |
|
|
|
25 |
num_models = 1
|
26 |
+
max_imagesone = 1
|
27 |
+
max_images = 6
|
28 |
default_models = models[:num_models]
|
29 |
+
inference_timeout = 300
|
30 |
+
MAX_SEED = 2**32-1
|
31 |
|
32 |
def extend_choices(choices):
|
33 |
return choices + (num_models - len(choices)) * ['NA']
|
34 |
|
|
|
35 |
def update_imgbox(choices):
|
36 |
choices_plus = extend_choices(choices)
|
37 |
+
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus]
|
38 |
|
39 |
+
def gen_fn_original(model_str, prompt):
|
|
|
40 |
if model_str == 'NA':
|
41 |
return None
|
42 |
noise = str('') #str(randint(0, 99999999999))
|
|
|
47 |
return None
|
48 |
noisesix = str(randint(1941, 2023)) #str(randint(0, 99999999999))
|
49 |
return models_load[model_str](f'{prompt} {noisesix}')
|
50 |
+
|
51 |
+
# https://huggingface.co/docs/api-inference/detailed_parameters
|
52 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
53 |
+
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
|
54 |
+
from pathlib import Path
|
55 |
+
kwargs = {}
|
56 |
+
if height is not None and height >= 256: kwargs["height"] = height
|
57 |
+
if width is not None and width >= 256: kwargs["width"] = width
|
58 |
+
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
59 |
+
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
60 |
+
noise = ""
|
61 |
+
if seed >= 0: kwargs["seed"] = seed
|
62 |
+
else:
|
63 |
+
rand = randint(1, 500)
|
64 |
+
for i in range(rand):
|
65 |
+
noise += " "
|
66 |
+
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
|
67 |
+
prompt=f'{prompt} {noise}', negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
68 |
+
await asyncio.sleep(0)
|
69 |
+
try:
|
70 |
+
result = await asyncio.wait_for(task, timeout=timeout)
|
71 |
+
except (Exception, asyncio.TimeoutError) as e:
|
72 |
+
print(e)
|
73 |
+
print(f"Task timed out: {model_str}")
|
74 |
+
if not task.done(): task.cancel()
|
75 |
+
result = None
|
76 |
+
if task.done() and result is not None:
|
77 |
+
with lock:
|
78 |
+
png_path = "image.png"
|
79 |
+
result.save(png_path)
|
80 |
+
image = str(Path(png_path).resolve())
|
81 |
+
return image
|
82 |
+
return None
|
83 |
+
|
84 |
+
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
85 |
+
if model_str == 'NA':
|
86 |
+
return None
|
87 |
+
try:
|
88 |
+
loop = asyncio.new_event_loop()
|
89 |
+
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
90 |
+
height, width, steps, cfg, seed, inference_timeout))
|
91 |
+
except (Exception, asyncio.CancelledError) as e:
|
92 |
+
print(e)
|
93 |
+
print(f"Task aborted: {model_str}")
|
94 |
+
result = None
|
95 |
+
finally:
|
96 |
+
loop.close()
|
97 |
+
return result
|
98 |
+
|
99 |
+
css="""
|
100 |
+
.gradio-container {max-width: 1200px; margin: 0 auto; !important;}
|
101 |
+
.output { width=128px; height=128px; !important; }
|
102 |
+
.outputone { width=512px; height=512px; !important; }
|
103 |
+
"""
|
104 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
105 |
gr.HTML(
|
106 |
"""
|
107 |
<div>
|
|
|
110 |
"""
|
111 |
)
|
112 |
with gr.Tab('One Image'):
|
113 |
+
model_choice = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True)
|
114 |
+
with gr.Group():
|
115 |
+
txt_input = gr.Textbox(label='Your prompt:', lines=1)
|
116 |
+
with gr.Accordion("Advanced", open=False, visible=True):
|
117 |
+
neg_input = gr.Textbox(label='Negative prompt:', lines=1)
|
118 |
+
with gr.Row():
|
119 |
+
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
120 |
+
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
121 |
+
with gr.Row():
|
122 |
+
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
123 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
124 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
125 |
+
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
|
126 |
|
127 |
+
with gr.Row():
|
128 |
+
gen_button = gr.Button('Generate', scale=3)
|
129 |
+
stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
130 |
+
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
|
|
|
|
131 |
|
132 |
with gr.Row():
|
133 |
+
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
|
134 |
+
interactive=False, min_width=80, show_share_button=False, format="png",
|
135 |
+
visible=True) for _ in range(max_imagesone)]
|
136 |
|
137 |
for i, o in enumerate(output):
|
138 |
img_in = gr.Number(i, visible = False)
|
139 |
num_imagesone.change(lambda i, n: gr.update(visible = (i < n)), [img_in, num_imagesone], o, show_progress = False)
|
140 |
+
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
|
141 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
142 |
+
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
|
143 |
+
height, width, steps, cfg, seed], outputs=[o])
|
144 |
+
stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event])
|
145 |
with gr.Row():
|
146 |
gr.HTML(
|
147 |
"""
|
|
|
151 |
"""
|
152 |
)
|
153 |
with gr.Tab('Up To Six'):
|
154 |
+
model_choice2 = gr.Dropdown(models, label=f'Choose a model from the {int(len(models))} available! Try clearing the box and typing on it to filter them!',
|
155 |
+
value=models[0], filterable=True)
|
156 |
+
with gr.Group():
|
157 |
+
txt_input2 = gr.Textbox(label='Your prompt:', lines=1)
|
158 |
+
with gr.Accordion("Advanced", open=False, visible=True):
|
159 |
+
neg_input2 = gr.Textbox(label='Negative prompt:', lines=1)
|
160 |
+
with gr.Row():
|
161 |
+
width2 = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
162 |
+
height2 = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
163 |
+
with gr.Row():
|
164 |
+
steps2 = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
165 |
+
cfg2 = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
166 |
+
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
167 |
+
|
168 |
+
num_images = gr.Slider(1, max_images, value=max_images, step=1,
|
169 |
+
label=f'Number of images (if you want less than {int(max_images)} decrease them slowly until they match the boxes below)')
|
170 |
|
171 |
+
with gr.Row():
|
172 |
+
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
|
173 |
+
stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
174 |
+
gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
|
|
|
|
175 |
gr.HTML(
|
176 |
"""
|
177 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
178 |
<div>
|
179 |
<body>
|
180 |
+
<div class="center"><p style="margin-bottom: 10px;">Scroll down to see more images (they generate in a random order).</p>
|
181 |
</div>
|
182 |
</body>
|
183 |
</div>
|
184 |
</div>
|
185 |
"""
|
186 |
)
|
187 |
+
with gr.Row():
|
188 |
+
output2 = [gr.Image(label = '', show_download_button=True, elem_classes="output",
|
189 |
+
interactive=False, min_width=80, visible=True, format="png",
|
190 |
+
show_share_button=False, show_label=False) for _ in range(max_images)]
|
191 |
|
192 |
for i, o in enumerate(output2):
|
193 |
+
img_i = gr.Number(i, visible=False)
|
194 |
+
num_images.change(lambda i, n: gr.update(visible=(i < n)), [img_i, num_images], o, show_progress=False)
|
195 |
+
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
196 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
197 |
+
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
198 |
+
height2, width2, steps2, cfg2, seed2], outputs=[o])
|
199 |
+
stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
|
200 |
with gr.Row():
|
201 |
gr.HTML(
|
202 |
"""
|
|
|
206 |
"""
|
207 |
)
|
208 |
|
209 |
+
demo.queue(default_concurrency_limit=200, max_size=200)
|
210 |
+
demo.launch(show_api=False, max_threads=400)
|
externalmod.py
CHANGED
@@ -33,6 +33,9 @@ if TYPE_CHECKING:
|
|
33 |
from gradio.interface import Interface
|
34 |
|
35 |
|
|
|
|
|
|
|
36 |
@document()
|
37 |
def load(
|
38 |
name: str,
|
@@ -115,7 +118,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
115 |
|
116 |
headers["X-Wait-For-Model"] = "true"
|
117 |
client = huggingface_hub.InferenceClient(
|
118 |
-
model=model_name, headers=headers, token=hf_token
|
119 |
)
|
120 |
|
121 |
# For tasks that are not yet supported by the InferenceClient
|
@@ -365,10 +368,10 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
365 |
else:
|
366 |
raise ValueError(f"Unsupported pipeline type: {p}")
|
367 |
|
368 |
-
def query_huggingface_inference_endpoints(*data):
|
369 |
if preprocess is not None:
|
370 |
data = preprocess(*data)
|
371 |
-
data = fn(*data) # type: ignore
|
372 |
if postprocess is not None:
|
373 |
data = postprocess(data) # type: ignore
|
374 |
return data
|
@@ -528,4 +531,54 @@ def gr_Interface_load(
|
|
528 |
alias: str | None = None,
|
529 |
**kwargs,
|
530 |
) -> Blocks:
|
531 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
from gradio.interface import Interface
|
34 |
|
35 |
|
36 |
+
server_timeout = 600
|
37 |
+
|
38 |
+
|
39 |
@document()
|
40 |
def load(
|
41 |
name: str,
|
|
|
118 |
|
119 |
headers["X-Wait-For-Model"] = "true"
|
120 |
client = huggingface_hub.InferenceClient(
|
121 |
+
model=model_name, headers=headers, token=hf_token, timeout=server_timeout,
|
122 |
)
|
123 |
|
124 |
# For tasks that are not yet supported by the InferenceClient
|
|
|
368 |
else:
|
369 |
raise ValueError(f"Unsupported pipeline type: {p}")
|
370 |
|
371 |
+
def query_huggingface_inference_endpoints(*data, **kwargs):
|
372 |
if preprocess is not None:
|
373 |
data = preprocess(*data)
|
374 |
+
data = fn(*data, **kwargs) # type: ignore
|
375 |
if postprocess is not None:
|
376 |
data = postprocess(data) # type: ignore
|
377 |
return data
|
|
|
531 |
alias: str | None = None,
|
532 |
**kwargs,
|
533 |
) -> Blocks:
|
534 |
+
try:
|
535 |
+
return load_blocks_from_repo(name, src, hf_token, alias)
|
536 |
+
except Exception as e:
|
537 |
+
print(e)
|
538 |
+
return gradio.Interface(lambda: None, ['text'], ['image'])
|
539 |
+
|
540 |
+
|
541 |
+
def list_uniq(l):
|
542 |
+
return sorted(set(l), key=l.index)
|
543 |
+
|
544 |
+
|
545 |
+
def get_status(model_name: str):
|
546 |
+
from huggingface_hub import InferenceClient
|
547 |
+
client = InferenceClient(timeout=10)
|
548 |
+
return client.get_model_status(model_name)
|
549 |
+
|
550 |
+
|
551 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
552 |
+
try:
|
553 |
+
status = get_status(model_name)
|
554 |
+
except Exception as e:
|
555 |
+
print(e)
|
556 |
+
print(f"Couldn't load {model_name}.")
|
557 |
+
return False
|
558 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
559 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
560 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
561 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
562 |
+
|
563 |
+
|
564 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
565 |
+
from huggingface_hub import HfApi
|
566 |
+
api = HfApi()
|
567 |
+
default_tags = ["diffusers"]
|
568 |
+
if not sort: sort = "last_modified"
|
569 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
570 |
+
models = []
|
571 |
+
try:
|
572 |
+
model_infos = api.list_models(author=author, task="text-to-image",
|
573 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
574 |
+
except Exception as e:
|
575 |
+
print(f"Error: Failed to list models.")
|
576 |
+
print(e)
|
577 |
+
return models
|
578 |
+
for model in model_infos:
|
579 |
+
if not model.private and not model.gated:
|
580 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
581 |
+
if not_tag and not_tag in model.tags or not loadable: continue
|
582 |
+
models.append(model.id)
|
583 |
+
if len(models) == limit: break
|
584 |
+
return models
|