Spaces:
Sleeping
Sleeping
File size: 4,627 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
"""This script is the differentiable renderer for Deep3DFaceRecon_pytorch
Attention, antialiasing step is missing in current version.
"""
import pytorch3d.ops
import torch
import torch.nn.functional as F
import kornia
from kornia.geometry.camera import pixel2cam
import numpy as np
from typing import List
from scipy.io import loadmat
from torch import nn
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
DirectionalLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesUV,
)
# def ndc_projection(x=0.1, n=1.0, f=50.0):
# return np.array([[n/x, 0, 0, 0],
# [ 0, n/-x, 0, 0],
# [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
# [ 0, 0, -1, 0]]).astype(np.float32)
class MeshRenderer(nn.Module):
def __init__(self,
rasterize_fov,
znear=0.1,
zfar=10,
rasterize_size=224):
super(MeshRenderer, self).__init__()
# x = np.tan(np.deg2rad(rasterize_fov * 0.5)) * znear
# self.ndc_proj = torch.tensor(ndc_projection(x=x, n=znear, f=zfar)).matmul(
# torch.diag(torch.tensor([1., -1, -1, 1])))
self.rasterize_size = rasterize_size
self.fov = rasterize_fov
self.znear = znear
self.zfar = zfar
self.rasterizer = None
def forward(self, vertex, tri, feat=None):
"""
Return:
mask -- torch.tensor, size (B, 1, H, W)
depth -- torch.tensor, size (B, 1, H, W)
features(optional) -- torch.tensor, size (B, C, H, W) if feat is not None
Parameters:
vertex -- torch.tensor, size (B, N, 3)
tri -- torch.tensor, size (B, M, 3) or (M, 3), triangles
feat(optional) -- torch.tensor, size (B, N ,C), features
"""
device = vertex.device
rsize = int(self.rasterize_size)
# ndc_proj = self.ndc_proj.to(device)
# trans to homogeneous coordinates of 3d vertices, the direction of y is the same as v
if vertex.shape[-1] == 3:
vertex = torch.cat([vertex, torch.ones([*vertex.shape[:2], 1]).to(device)], dim=-1)
vertex[..., 0] = -vertex[..., 0]
# vertex_ndc = vertex @ ndc_proj.t()
if self.rasterizer is None:
self.rasterizer = MeshRasterizer()
print("create rasterizer on device cuda:%d"%device.index)
# ranges = None
# if isinstance(tri, List) or len(tri.shape) == 3:
# vum = vertex_ndc.shape[1]
# fnum = torch.tensor([f.shape[0] for f in tri]).unsqueeze(1).to(device)
# fstartidx = torch.cumsum(fnum, dim=0) - fnum
# ranges = torch.cat([fstartidx, fnum], axis=1).type(torch.int32).cpu()
# for i in range(tri.shape[0]):
# tri[i] = tri[i] + i*vum
# vertex_ndc = torch.cat(vertex_ndc, dim=0)
# tri = torch.cat(tri, dim=0)
# for range_mode vetex: [B*N, 4], tri: [B*M, 3], for instance_mode vetex: [B, N, 4], tri: [M, 3]
tri = tri.type(torch.int32).contiguous()
# rasterize
cameras = FoVPerspectiveCameras(
device=device,
fov=self.fov,
znear=self.znear,
zfar=self.zfar,
)
raster_settings = RasterizationSettings(
image_size=rsize
)
# print(vertex.shape, tri.shape)
mesh = Meshes(vertex.contiguous()[...,:3], tri.unsqueeze(0).repeat((vertex.shape[0],1,1)))
fragments = self.rasterizer(mesh, cameras = cameras, raster_settings = raster_settings)
rast_out = fragments.pix_to_face.squeeze(-1)
depth = fragments.zbuf
# render depth
depth = depth.permute(0, 3, 1, 2)
mask = (rast_out > 0).float().unsqueeze(1)
depth = mask * depth
image = None
if feat is not None:
attributes = feat.reshape(-1,3)[mesh.faces_packed()]
image = pytorch3d.ops.interpolate_face_attributes(fragments.pix_to_face,
fragments.bary_coords,
attributes)
# print(image.shape)
image = image.squeeze(-2).permute(0, 3, 1, 2)
image = mask * image
return mask, depth, image
|