Spaces:
Running
Running
File size: 7,933 Bytes
9ab094a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import collections
import functools
import os
import re
import yaml
class AttrDict(dict):
"""Dict as attribute trick."""
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
for key, value in self.__dict__.items():
if isinstance(value, dict):
self.__dict__[key] = AttrDict(value)
elif isinstance(value, (list, tuple)):
if isinstance(value[0], dict):
self.__dict__[key] = [AttrDict(item) for item in value]
else:
self.__dict__[key] = value
def yaml(self):
"""Convert object to yaml dict and return."""
yaml_dict = {}
for key, value in self.__dict__.items():
if isinstance(value, AttrDict):
yaml_dict[key] = value.yaml()
elif isinstance(value, list):
if isinstance(value[0], AttrDict):
new_l = []
for item in value:
new_l.append(item.yaml())
yaml_dict[key] = new_l
else:
yaml_dict[key] = value
else:
yaml_dict[key] = value
return yaml_dict
def __repr__(self):
"""Print all variables."""
ret_str = []
for key, value in self.__dict__.items():
if isinstance(value, AttrDict):
ret_str.append('{}:'.format(key))
child_ret_str = value.__repr__().split('\n')
for item in child_ret_str:
ret_str.append(' ' + item)
elif isinstance(value, list):
if isinstance(value[0], AttrDict):
ret_str.append('{}:'.format(key))
for item in value:
# Treat as AttrDict above.
child_ret_str = item.__repr__().split('\n')
for item in child_ret_str:
ret_str.append(' ' + item)
else:
ret_str.append('{}: {}'.format(key, value))
else:
ret_str.append('{}: {}'.format(key, value))
return '\n'.join(ret_str)
class Config(AttrDict):
r"""Configuration class. This should include every human specifiable
hyperparameter values for your training."""
def __init__(self, filename=None, args=None, verbose=False, is_train=True):
super(Config, self).__init__()
# Set default parameters.
# Logging.
large_number = 1000000000
self.snapshot_save_iter = large_number
self.snapshot_save_epoch = large_number
self.snapshot_save_start_iter = 0
self.snapshot_save_start_epoch = 0
self.image_save_iter = large_number
self.eval_epoch = large_number
self.start_eval_epoch = large_number
self.eval_epoch = large_number
self.max_epoch = large_number
self.max_iter = large_number
self.logging_iter = 100
self.image_to_tensorboard=False
self.which_iter = 0 # args.which_iter
self.resume = False
self.checkpoints_dir = '/Users/shadowcun/Downloads/'
self.name = 'face'
self.phase = 'train' if is_train else 'test'
# Networks.
self.gen = AttrDict(type='generators.dummy')
self.dis = AttrDict(type='discriminators.dummy')
# Optimizers.
self.gen_optimizer = AttrDict(type='adam',
lr=0.0001,
adam_beta1=0.0,
adam_beta2=0.999,
eps=1e-8,
lr_policy=AttrDict(iteration_mode=False,
type='step',
step_size=large_number,
gamma=1))
self.dis_optimizer = AttrDict(type='adam',
lr=0.0001,
adam_beta1=0.0,
adam_beta2=0.999,
eps=1e-8,
lr_policy=AttrDict(iteration_mode=False,
type='step',
step_size=large_number,
gamma=1))
# Data.
self.data = AttrDict(name='dummy',
type='datasets.images',
num_workers=0)
self.test_data = AttrDict(name='dummy',
type='datasets.images',
num_workers=0,
test=AttrDict(is_lmdb=False,
roots='',
batch_size=1))
self.trainer = AttrDict(
model_average=False,
model_average_beta=0.9999,
model_average_start_iteration=1000,
model_average_batch_norm_estimation_iteration=30,
model_average_remove_sn=True,
image_to_tensorboard=False,
hparam_to_tensorboard=False,
distributed_data_parallel='pytorch',
delay_allreduce=True,
gan_relativistic=False,
gen_step=1,
dis_step=1)
# # Cudnn.
self.cudnn = AttrDict(deterministic=False,
benchmark=True)
# Others.
self.pretrained_weight = ''
self.inference_args = AttrDict()
# Update with given configurations.
assert os.path.exists(filename), 'File {} not exist.'.format(filename)
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
try:
with open(filename, 'r') as f:
cfg_dict = yaml.load(f, Loader=loader)
except EnvironmentError:
print('Please check the file with name of "%s"', filename)
recursive_update(self, cfg_dict)
# Put common opts in both gen and dis.
if 'common' in cfg_dict:
self.common = AttrDict(**cfg_dict['common'])
self.gen.common = self.common
self.dis.common = self.common
if verbose:
print(' config '.center(80, '-'))
print(self.__repr__())
print(''.center(80, '-'))
def rsetattr(obj, attr, val):
"""Recursively find object and set value"""
pre, _, post = attr.rpartition('.')
return setattr(rgetattr(obj, pre) if pre else obj, post, val)
def rgetattr(obj, attr, *args):
"""Recursively find object and return value"""
def _getattr(obj, attr):
r"""Get attribute."""
return getattr(obj, attr, *args)
return functools.reduce(_getattr, [obj] + attr.split('.'))
def recursive_update(d, u):
"""Recursively update AttrDict d with AttrDict u"""
for key, value in u.items():
if isinstance(value, collections.abc.Mapping):
d.__dict__[key] = recursive_update(d.get(key, AttrDict({})), value)
elif isinstance(value, (list, tuple)):
if isinstance(value[0], dict):
d.__dict__[key] = [AttrDict(item) for item in value]
else:
d.__dict__[key] = value
else:
d.__dict__[key] = value
return d
|