victormiller
commited on
Commit
•
14abefa
1
Parent(s):
366a2ff
Update results.py
Browse files- results.py +24 -0
results.py
CHANGED
@@ -61,7 +61,30 @@ fig_val.update_layout(
|
|
61 |
# Show the plot
|
62 |
validation_loss_graph = fig_val
|
63 |
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
#Perplexity Across Different Buckets (global)
|
@@ -746,6 +769,7 @@ upsampling_exp = Div(
|
|
746 |
H3("Training Evaluations"),
|
747 |
P("We also conducted full scale training using TxT360 and FineWeb-1.5T. Below are plots of the training and validation loss curves for each dataset. We can see that TxT360 achieves a lower training and validation loss compared to FineWeb-1.5T. "),
|
748 |
plotly2fasthtml(validation_loss_graph),
|
|
|
749 |
)
|
750 |
|
751 |
perp1_div = Div(
|
|
|
61 |
# Show the plot
|
62 |
validation_loss_graph = fig_val
|
63 |
|
64 |
+
## lm loss graph
|
65 |
+
# Load the data from the cleaned dataset
|
66 |
+
data = pd.read_csv('data/lm_loss_txt360_fineweb.csv') # Replace with your actual file path
|
67 |
|
68 |
+
# Create the plot
|
69 |
+
fig_loss = go.Figure()
|
70 |
+
|
71 |
+
# Add TxT360 line
|
72 |
+
fig_loss.add_trace(go.Scatter(x=data['Step'], y=data['TxT360'], mode='lines', name='TxT360'))
|
73 |
+
|
74 |
+
# Add FineWeb line
|
75 |
+
fig_loss.add_trace(go.Scatter(x=data['Step'], y=data['FineWeb'], mode='lines', name='FineWeb'))
|
76 |
+
|
77 |
+
# Update layout
|
78 |
+
fig_loss.update_layout(
|
79 |
+
title="Loss over Steps: TxT360 vs FineWeb",
|
80 |
+
xaxis_title="Steps",
|
81 |
+
yaxis_title="Loss",
|
82 |
+
legend_title="Models",
|
83 |
+
template="plotly_dark"
|
84 |
+
)
|
85 |
+
|
86 |
+
# Display the graph
|
87 |
+
lm_loss_graph = fig_loss
|
88 |
|
89 |
|
90 |
#Perplexity Across Different Buckets (global)
|
|
|
769 |
H3("Training Evaluations"),
|
770 |
P("We also conducted full scale training using TxT360 and FineWeb-1.5T. Below are plots of the training and validation loss curves for each dataset. We can see that TxT360 achieves a lower training and validation loss compared to FineWeb-1.5T. "),
|
771 |
plotly2fasthtml(validation_loss_graph),
|
772 |
+
plotly2fasthtml(lm_loss_graph),
|
773 |
)
|
774 |
|
775 |
perp1_div = Div(
|