File size: 2,528 Bytes
1f4a582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
import huggingface_hub
from PIL import Image
from pathlib import Path
import onnxruntime as rt
import numpy as np
import csv
import spaces

import onnxruntime as rt
e621_model_path = Path(huggingface_hub.snapshot_download('toynya/Z3D-E621-Convnext'))
e621_model_session = rt.InferenceSession(e621_model_path / 'model.onnx', providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
with open(e621_model_path / 'tags-selected.csv', mode='r', encoding='utf-8') as file:
	csv_reader = csv.DictReader(file)
	e621_model_tags = [row['name'].strip() for row in csv_reader]


def prepare_image_e621(image: Image.Image, target_size: int):
	import numpy as np
	# Pad image to square
	image_shape = image.size
	max_dim = max(image_shape)
	pad_left = (max_dim - image_shape[0]) // 2
	pad_top = (max_dim - image_shape[1]) // 2

	padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
	padded_image.paste(image, (pad_left, pad_top))

	# Resize
	if max_dim != target_size:
		padded_image = padded_image.resize((target_size, target_size), Image.BICUBIC)
	
	# Convert to numpy array
	# Based on the ONNX graph, the model appears to expect inputs in the range of 0-255
	image_array = np.asarray(padded_image, dtype=np.float32)

	# Convert PIL-native RGB to BGR
	image_array = image_array[:, :, ::-1]

	return np.expand_dims(image_array, axis=0)


def predict_e621(image: Image.Image):
	THRESHOLD = 0.3
	image_array = prepare_image_e621(image, 448)

	image_array = prepare_image_e621(image, 448)
	input_name = 'input_1:0'
	output_name = 'predictions_sigmoid'

	result = e621_model_session.run([output_name], {input_name: image_array})
	result = result[0][0]

	scores = {e621_model_tags[i]: result[i] for i in range(len(result))}
	predicted_tags = [tag for tag, score in scores.items() if score > THRESHOLD]
	tag_string = ', '.join(predicted_tags).replace("_", " ")

	return tag_string, scores


DESCRIPTION = """
E621 Tagger (Z3D-E621-Convnext) 
- Image => E621 Pony Prompt
- Mod of [fancyfeast's demo](https://huggingface.co/spaces/fancyfeast/Z3D-E621-Convnext-space) for toynya's [Z3D-E621-Convnext](https://huggingface.co/toynya/Z3D-E621-Convnext)
"""

gradio_app = gr.Interface(
	predict_e621,
	inputs=gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil'),
	outputs=[
		gr.Textbox(label="Tag String", show_copy_button=True),
		gr.Label(label="Tag Predictions", num_top_classes=100),
	],
	description=DESCRIPTION,
	allow_flagging="never",
)


if __name__ == '__main__':
	gradio_app.launch()